On the theory of metal nanoparticles based on quantum mechanical calculation
DOI:
https://doi.org/10.11113/mjfas.v7n1.202Keywords:
Metal Nanoparticles, Optical Absorption, Quantum Mechanical Calculation, Density Functional Theory,Abstract
Metal nanoparticles have attracted considerable attention owing to their unusual physical and chemical properties from those of their molecular and bulk
counterparts and are fundamental to surface science applications such as catalysts, optics, photonics, sensors, and spectroscopy. Traditionally, the optical
absorption spectra are derived from the collective oscillations of free electrons of conduction band in metal nanoparticles as a consequence of incident
electromagnetic radiation polarizing the nanoparticles. This phenomenon, known as the localized surface plasmon resonance, is unique to metallic
nanostructures and has been modelled by Gustav Mei in 1908 based on the Maxwell’s equations. It is the most-cited scientific paper of 20th century and this
classical approach is still used widely. However, the theory cannot account for quantum confinement effects of the electronic structure, the fundamental
physical properties of metal nanoparticles. More satisfying treatment of photons interacting with metal nanoparticles is by a quantum theory approach.
When UV-visible light impinging on a metal nanoparticle, occupied ground-state conduction electrons absorb photons and excite to higher unoccupied
higher energy-state of the conduction band of the particle. In this development we used time-independent Schrodinger equation of the ground-state energy
of Thomas-Fermi-Dirac-Weizsacker atomic model and also the density function in the final Euler-Lagrange equation was algebraically substituted with the
absorption function. The total energy functional was computed numerically for isolated silver and gold nanospheres at various sizes. The electronic
transitions within the conduction band are limited only by the Lagrange multiplier and the quantum number selection rules. The calculated absorption peaks
fall within the experimental regimes. The results show a red-shift absorption peak increases with the increase of particle diameter corresponds to a decrease
in the conduction band energy of metal nanoparticles.
References
W.A. Murray, J.R. Suckling, W.L. Barnes, Nano Lett., 6 (2006) 1772-1777.
E. Ozbay, Science 331, (2006) 189-193.
Y. Chen, K. Munechika , D.S. Ginger, Nano Lett, 7 (2007) 690-696.
L.J. Sherry, S.H. Chang , G.C. Schatz , R.P. van Duyne , Nano Lett, 5 (2005) 2034-2038.
N.K. Grady, N.J. Halas, P. Nordlander, Chem Phys Lett, 399 (2004) 167-171.
C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam , J. Yin, Nanotechno, 21 (2010) 1-20.
D.K. Kambhampati, W. Knoll, Curr. Opin. Colloid. In. Sci, 4 (1999) 273-280.
K. Tanabe, Mater Lett, 61 (2007) 4573-4575.
F. Cannone , M. Collini, L. D’Alfonso, G. Baldini, G. Chirico, G. Tallarida, P. Pallavicini, Nano Lett, 7 (2007) 1070-107.
G. Nikolai, N.G. Khlebtsov, L.A. Dykman, J Quant Spec Radiat Trans, 111 (2010) 1–35.
G. Korotcenkov , S.D. Han , J.R. Stetter, Chem Rev, 109 (2009) 1402–1433.
G. Mie, Annalen der Physik, 25 (1908) 377-445.
M.A. Garcia, J. Llopis, S.E. Paje, Chem Phys Lett, 315 (1999) 313-320.
V.M. Renteria, J. Garcia-Macedo, Colloids Surf. A, 273 (2006) 1–3.
R. Guns, Ann Phys, 37 (1912) 881-900.
J.C. Maxwell Garnett, Trans. R. Soc. London, 205 (1906) 237-288.
A. Castro, M.A.L. Marques, J.A. Alonso, A.J. Rubio, Comp Theor Nanosci, 1 (2004) 231–255.
D. Negrut, M. Anitescu, T. Munson, P. Zapol, in: J.M. Goicolea, J. Cuadrado, J.C. Garcia Orden (Eds), Density functional theory-based
nanostructure investigation: Theoretical Considerations. Madrid, Spin, 21-24 June 2005 pp. 1-30.
P. Samal P, M.K. Harbola, J Phys B: At Mol Opt Phys, 39 (2006) 4065-4080.
C.M. Aikens, S. Li, G.C. Schatz, . J Phys Chem C, 112 (2008) 11272-11279.
H. Chen, A. Zhou, Numer Math Theor Meth Appl, 1 (2008) 1-28.
J. Roqué , N. Poolton, J. Molera, A. Smith, E. Pantos, M. Vendrell-Saz, Phys Stat Solidi B, 243 (2006) 1337 – 1346
L.H. Thomas, Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542-548.
Hohenberg, W. Kohn, Phys Review, 136 (1964) B864–B871.
W. Kohn, L.J. Sham, Physical Review, 140 (1965) A1133–A1138.
E. Fermi, Rend Accad Naz Lincei, 6 (1927) 602-607.
P.A.M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society, 26 (1930) 376-385.
C.F. Von Weizsacker, Zeitschrift für Physik 96 (1935) 431–458.
W. Yang, Phys Review A, 34 (1986) 4575-4585.
P.K. Chattaraj, S. Sengupta, J Phys Chem A, 101 (1997) 7893-7900.
G.H. Chan , J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, . Nano Lett, 7 (2007) 1947-1952.
N.W. Ashcroft, N.D. Mermin, Solid State Physics, W.B. Saunders Company, Philadelphia, 1976, pp. 135-138.
W. Yang, R.G. Parr, C. Lee, Phys Rev, A34 (1986) 4586-4590.
A. Pan, Z. Yang , H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, Appl Surf Sci, 205 (1993) 323–328.
N. Sakai, Y. Fujiwara,M. Arai, K. Yu, T. Tatsuma, Electroanal Chem 628 (2009) 7–15.
Y. Peng, Y. Wang, Y. Yang, D.D. Dlott, J Nanopart Res, 12 (2009) 777-787.
B. Balamurugan, T. Maruyama, J Appl Phys, 102 (2007) 034306-034311.
E. Anno, M. Tanimoto, Phy Rev B 73 (2006) 155430-155436.