Exploring the Effects of Fermented Chitin Nanowhiskers on Tensile and Thermal Properties of Poly(ethylene glycol) modified Polylactic Acid Nanocomposites
DOI:
https://doi.org/10.11113/mjfas.v17n2.2002Keywords:
Chitin, Nanowhiskers, Polylactic acid, Poly(ethylene glycol), NanocompositesAbstract
The incorporation of fermented chitin nanowhiskers (FCHW) into poly(lactic acid) (PLA) increased the tensile modulus and strength of PLA at the expense of ductility. The brittleness of PLA can be overcome with the use of plasticizer such as polyethylene glycols (PEG). The objective of this study is to investigate the effect of FCHW on the tensile and thermal properties PLA incorporated with PEG as plasticizer (PLA/PEG). PLA/PEG and FCHW reinforced PLA/PEG nanocomposites were prepared using solution mixing technique. Thermogravimetric analysis (TGA) was used to determine the thermal properties while tensile properties were determined from the tensile test. The incorporation of PEG successfully increased the ductility and tensile strength of PLA at the expense of modulus. Based on the tensile properties, 5 phr PEG was chosen for further investigation on the effect of FCHW on PEG modified PLA. Incorporation of 1 phr FCHW PLA/PEG increased the tensile strength and Young’s modulus. However, the tensile strength decreased with further addition of FCHW. The elongation at break of PLA/PEG decreased drastically with the incorporation of 1 phr FCHW and decreased gradually with further increase of FCHW. The thermal stability from TGA of FCHW reinforced PLA/PEG nanocomposites at 5 phr FCHW content was observed to be significantly higher compared to PLA/PEG, as indicated by T20 and Tmax.
References
Ali, N. A. 2017. Effect of Polyethylene Terephthalate (PET) on Mechanical and Optical Properties of Polylactic Acid (PLA) for Packaging Application. J. chem. pharm. 9(3), 184-188.
Arjmandi, R., Hassan, A., Haafiz, M. K. M., Zakaria, Z. 2015. Tensile and Morphological Properties of Hybrid Montmorillonite/Microcrystalline Cellulose Filled Polylactic Acid Composites: Effect of Filler Ratio. J. Adv. Mater. Res. 1125, 271-275.
Castillo, R. V., Müller, A. J. 2009. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 34(6), 516-560.
Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z., Then, Y. Y., Loo, Y. Y. 2014. Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): A comparative study. Polymers. 6, 2232-2246.
Choi, K. M., Choi, M. C., Han, D. H., Park, T. S., Ha, C. S. 2013. Plasticization of poly (lactic acid)(PLA) through chemical grafting of poly (ethylene glycol)(PEG) via in situ reactive blending. Eur. Polym. J. 49(8), 2356-2364.
Drumright, R. E., Gruber, P. R., Henton, D. E. 2000. Polylactic acid technology. Adv. Mater. 12(23), 1841-1846.
Fink, J. K. 2010. A concise introduction to additives for thermoplastic polymers. (Vol. 1). John Wiley & Sons.
Garlotta, D. 2001. A literature review of poly (lactic acid). J. Polym. Environ. 9(2), 63-84.
Haafiz, M. M., Hassan, A., Khalil, H. A., Fazita, M. N., Islam, M. S., Inuwa, I. M., Marlina, M. M.& Hussin, M. H. 2016. Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int. J. Biol. Macromol. 85, 370-378.
Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., Jawaid, M. 2013. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 98(1), 139–145.
Jung, J. W., Kim, S. H., Kim, S. H., Park, J. K., Lee, W. I. 2011. Research on the development of the properties of PLA composites for automotive interior parts. J. Mater. Sci. 24(3), 1-5.
Lourdin, D., Coignard, L., Bizot, H., Colonna, P. 1997. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer. 38(21). 5401-5406.
Maraveas, C. 2020. Production of sustainable and biodegradable polymers from agricultural waste. Polymers. 12(5), 1127-1148.
Mincea, M., Negrulescu, A., Ostafe, V. 2012. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev. Adv. 30, 225–242.
Mohapatra, A. K., Mohanty, S., Nayak, S. K. 2014. Effect of PEG on PLA/PEG blend and its nanocomposites: A study of thermo-mechanical and morphological characterization. Polym. Compos. 35(2), 283-293
Mohd Asri, S. E. A., Zakaria, Z., Hassan, A. Haafiz, M. K. M. 2020. Effect of chitin source and content on properties of chitin nanowhiskers filled polylactic acid composites. IIUM Eng. J. 21(2), 239–255.
Mohd Asri, S. E. A., Zakaria, Z., Hassan, A., Haafiz, M. K. M., Hassan, A., Arjmandi, R. 2017. Isolation and Characterization of Chitin Nanowhiskers from Fermented Tiger Prawn Waste. Chem. Eng. Trans. 56, 139–144.
Nair, K. G., Dufresne, A. 2003. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules. 4(3), 657–665.
Nishino, T., Matsui, R., Nakamae, K. 1999. Elastic modulus of the crystalline regions of chitin and chitosan. J. Polym. Sci. Pol. Phys. 37(11), 1191–1196.
Notta-Cuvier, D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J. M., Dubois, P. 2014. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym. Test. 36, 1-9.
Ozkoc, G., Kemaloglu, S. 2009. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J. Appl. Polym. Sci. 114, 2481-2487
Pillin, I., Montrelay, N., Grohens, Y. 2006. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor. Polymer. 47(13), 4676-4682.
Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7), 603–632.
Rizvi, R., Cochrane, B., Naguib, H., Lee, P. C. 2011. Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. J. Cell. Plast. 47(3), 283-300.
Sharma, S., Singh, A. A., Majumdar, A., Butola, B. S. 2019. Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. J. Mater. Sci. 54. 8971-8983.
Sheth, M., Kumar, R. A., Davé, V., Gross, R. A., McCarthy, S. P. 1997. Biodegradable polymer blends of poly (lactic acid) and poly (ethylene glycol). J. Appl. Polym. Sci. 66(8), 1495-1505.
Shi, X., Zhang, G., Phuong, T. V., Lazzeri, A. 2015. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of Poly(lactic acid). Molecules. 20(1), 1579-1593.
Singhvi, M. S., Zinjarde, S. S., Gokhale, D. V. 2019. Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127(6), 1612-1626.
Sun, H., Shao, X., Ma, Z. 2016. Effect of Incorporation Nanocrystalline Corn Straw Cellulose and Polyethylene Glycol on Properties of Biodegradable Films. J. Food Eng. 81(10), 2529-2537.
Sungsanit, K., Kao, N., Bhattacharya, S. N. 2012. Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52(1), 108-116.
Vincent, J. F. V, Wegst, U. G. K. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187–199.
Yu, L., Dean, K., Li, L. 2006. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31(6), 576–602.
Zakaria, Z., Islam, M. S., Hassan, A., Mohamad Haafiz, M. K., Arjmandi, R., Inuwa, I. M., Hasan, M. 2013. Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites. Adv. Mater. Sci. Eng. 2013, 1–7.
Zeng, J.-B., He, Y.-S., Li, S.-L., Wang, Y.-Z. 2012. Chitin whiskers: an overview. Biomacromolecules. 13(1), 1–11.