Copper oxide derived from copper(I) complex of 2-acetylpyridine-N(4)-(methoxy phenyl)thiosemicarbazone as an efficient catalyst in the reduction of 4-nitrophenol
DOI:
https://doi.org/10.11113/mjfas.v16n3.1922Keywords:
copper oxide, copper(I) complex, thiosemicarbazone, 4-nitrophenol reductionAbstract
A copper(I) complex of 2-acetylpyridine-N(4)-(methoxy phenyl)thiosemicarbazone was successfully synthesized and structurally characterized using Fourier transform infrared (FTIR), Ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopies, thermal gravimetric analysis (TGA) and CHN elemental analyses. The complex was converted into copper oxide in a simple, efficient, and cheap method via solid state thermal decomposition. Test of the catalytic performance of the copper(I) complex and copper oxide were in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) shows that copper oxide has a higher catalytic activity (98.7%) compared to the copper(I) complex (78.2%). Optimization of the catalyst loading revealed that 1.0 mol% of catalyst was the most optimized amount with the highest conversion (98.7%) than any other amounts, 0.5 mol% (96.8%), 1.5 mol% (95.4%) and 2.0 mol% (89.6%). Recyclability and reproducibility tests of copper oxide prove that this catalyst was very efficient, exhibit excellent reproducibility with consistent catalytic performances and could be reused four times without significant decrease in the catalytic activities.
References
Li, W., Cui, X., Junge, K., Surkus, A. E., Kreyenschulte, C., Bartling, S., Beller, M. (2019). General and chemoselective copper oxide catalysts for hydrogenation reactions. ACS Catalysis, 9(5), 4302-4307.
Liu, X., Cui, S., Qian, M., Sun, Z., Du, P. (2016). In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical communications, 52(32), 5546-5549.
Bhaumik, A., Haque, A., Karnati, P., Taufique, M. F. N., Patel, R., Ghosh, K. (2014). Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films, 572, 126-133.
Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., Grumezescu, A. M. (2016). Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 9(4), 75.
Velusamy, V., Palanisamy, S., Kokulnathan, T., Chen, S. W., Yang, T. C., Banks, C. E., Pramanik, S. K. (2018). Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Journal of Colloid and Interface Science, 530, 37-45.
Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Hanumanthappa, H., Veena, M. S., Kumar, S. K. (2014). Hydrothermal synthesis of hierarchical copper oxide nanoparticles and its potential application as adsorbent for Pb (II) with high removal capacity. Separation Science and Technology, 49(15), 2389-2399.
Saravanan, S., Sivasankar, T. (2016). Effect of ultrasound power and calcination temperature on the sonochemical synthesis of copper oxide nanoparticles for textile dyes treatment. Environmental Progress & Sustainable Energy, 35(3), 669-679.
Ameri, B., Davarani, S. S. H., Roshani, R., Moazami, H. R., Tadjarodi, A. (2017). A flexible mechanochemical route for the synthesis of copper oxide nanorods/nanoparticles/nanowires for supercapacitor applications: The effect of morphology on the charge storage ability. Journal of Alloys and Compounds, 695, 114-123.
Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321-325.
Verma, N., Kumar, N. (2019). Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomaterials Science & Engineering, 5(3), 1170-1188.
Monadi, N., Saeednia, S., Iranmanesh, P., Ardakani, M. H., Sinaei, S. (2019). Preparation and characterization of copper oxide nanoparticles through solid state thermal decomposition of an aqua nitrato copper (II) complex with a tridentate schiff-base ligand as a new precursor. Nanoscience & Nanotechnology-Asia, 9(1), 92-100.
Manikandan, R., Viswanathamurthi, P., Velmurugan, K., Nandhakumar, R., Hashimoto, T., Endo, A. (2014). Synthesis, characterization and crystal structure of cobalt (III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities. Journal of Photochemistry and Photobiology B: Biology, 130, 205-216.
Ramachandran, R., Prakash, G., Vijayan, P., Viswanathamurthi, P., & Malecki, J. G. (2017). Synthesis of heteroleptic copper (I) complexes with phosphine-functionalized thiosemicarbazones: An efficient catalyst for regioselective N-alkylation reactions. Inorganica Chimica Acta, 464, 88-93.
Omar, S. A., Ravoof, T. B., Tahir, M. I. M., Crouse, K. A. (2014). Synthesis and characterization of mixed-ligand copper (II) saccharinate complexes containing tridentate NNS Schiff bases. X-ray crystallographic analysis of the free ligands and one complex. Transition Metal Chemistry, 39(1), 119-126.
Ibrahim, D., Ndahi, N. P., Paul, B. B., Handy, O. W. Synthesis, characterization and antimicrobial activity of 2-Aminopyridine-cephalexin schiff base and its Mn (II), Co (II) AND Cu (II) complexes.
Ibrahim, A. B., Farh, M. K., Mayer, P. (2018). Copper complexes of new thiosemicarbazone ligands: Synthesis, structural studies and antimicrobial activity. Inorganic Chemistry Communications, 94, 127-132.
Rogolino, D., Cavazzoni, A., Gatti, A., Tegoni, M., Pelosi, G., Verdolino, V., ...Carcelli, M. (2017). Anti-proliferative effects of copper (II) complexes with hydroxyquinoline-thiosemicarbazone ligands. European journal of medicinal chemistry, 128, 140-153.
Kallus, S., Uhlik, L., van Schoonhoven, S., Pelivan, K., Berger, W., Enyedy, É. A., ... Keppler, B. K. (2019). Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron (III) and copper (II) complexes. Journal of inorganic biochemistry, 190, 85-97.
Hakimi, M., Moeini, K., Mardani, Z., & Takjoo, R. (2014). Synthesis and Spectral Study of a Copper (I) Complex,[Cu (L)(PPh3) 2], with NS-Donor Ligand. Phosphorus, Sulfur, and Silicon and the Related Elements, 189(5), 596-605.
Jadhav, A. N. & Chavan, S. S. (2014). Alkynyl functionalized iminopyridine copper(I) phosphine complexes: Synthesis,
spectroscopic characterization and photophysical properties. Journal of Luminescence, 148, 296–302.
Chavan, S. S., Sawant, S. K., Pawal, S. B., More, M. S. (2016). Copper (I) complexes of 2-methoxy-(5-trifluoromethyl-phenyl)-pyridine-2yl-methylene-amine: Impact of phosphine ancillary ligands on luminescence and catalytic properties of the copper (I) complexes. Polyhedron, 105, 192-199.
Favarin, L. R., Rosa, P. P., Pizzuti, L., Machulek Jr, A., Caires, A. R., Bezerra, L. S., ... & dos Anjos, A. (2017). Synthesis and structural characterization of new heteroleptic copper (I) complexes based on mixed phosphine/thiocarbamoyl-pyrazoline ligands. Polyhedron, 121, 185-190.
Liu, T., Sun, J., Tai, Y., Qian, H., & Li, M. (2017). Synthesis spectroscopic characterization, crystal structure, and biological evaluation of a diorganotin(IV) complex with 2-acetylpyridine N4-cyclohexylthiosemicarbazone. Inorganic and Nano-Metal. Chemistry, 47(6), 813–817.
Chen, J. L., Zeng, X. H., Luo, Y. S., Wang, W. M., He, L. H., Liu, S. J., ... & Wong, W. Y. (2017). Synthesis, structure, and photophysics of copper (i) triphenylphosphine complexes with functionalized 3-(2′-pyrimidinyl)-1, 2, 4-triazole ligands. Dalton Transactions, 46(38), 13077-13087.
Lobana, T. S., Kaushal, M., Virk, R. K., Garcia-Santos, I., & Jasinski, J. P. (2018). Thiosemicarbazonates of copper: Crystal structures of [(furan-2-acetaldehyde-N-phenyl-thiosemicarbazonato)][bis (triphenylphosphine)] copper (I) and [bis (furan-2-formaldehyde-N-phenyl-thiosemicarbazonato)] copper (II). Polyhedron, 152, 49-54.
Gunasekaran, N., Bhuvanesh, N. S. P., & Karvembu, R. (2017). Synthesis, characterization and catalytic oxidation property of copper (I) complexes containing monodentate acylthiourea ligands and triphenylphosphine. Polyhedron, 122, 39-45.
Jamil, M. S. S., Alkaabi, S., & Brisdon, A. K. (2019). Simple NMR predictors of catalytic hydrogenation activity for [Rh (cod) Cl (NHC)] complexes featuring fluorinated NHC ligands. Dalton Transactions, 48(25), 9317-9327.
Li, S. X., Luo, P., & Jiang, Y. M. (2017). Copper complexes with 4 (3H)-quinazolinone: Thermal gravimetric analysis and anticancer activity of [Cu (L) 2 (H 2 O) 2 (NO 3) 2],[Cu (L–)(NO 3)] n, and [Cu (L) 2 (H 2 O) 2 (Cl) 2]. Russian Journal of Coordination Chemistry, 43(4), 238-243.
Rajalakshmi, S., Vimalraj, S., Saravanan, S., Preeth, D. R., Shairam, M., & Anuradha, D. (2018). Synthesis and characterization of silibinin/phenanthroline/neocuproine copper (II) complexes for augmenting bone tissue regeneration: an in vitro analysis. JBIC Journal of Biological Inorganic Chemistry, 23(5), 753-762.
Rauf, A., Ye, J., Zhang, S., Shi, L., Akram, M. A., & Ning, G. (2019). Synthesis, structure and antibacterial activity of a copper (II) coordination polymer based on thiophene-2, 5-dicarboxylate ligand. Polyhedron, 166, 130-136.
Nordin, N. R., & Shamsuddin, M. (2019). Biosynthesis of copper (II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4-nitrophenol reduction. Malaysian Journal of Fundamental and Applied Sciences, 15, 218-224.
Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., Hussin, S. M. (2016). Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. Journal of colloid and interface science, 466, 113-119.
Sharma, A., Dutta, R. K., Roychowdhury, A., Das, D., Goyal, A., & Kapoor, A. (2017). Cobalt doped CuO nanoparticles as a highly efficient heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis A: General, 543, 257-265.