Enzyme activity and stability of lactase immobilized on two different supports: Calcium alginate and magnetic chitosan


  • Farah Syafiqah Mohd Zawawi Universiti Sains Islam Malaysia
  • Latiffah Karim Universiti Sains Islam Malaysia
  • Siti Radhiah Omar Universiti Sains Islam Malaysia
  • Asma’ Ali Universiti Malaysia Terengganu




Immobilized lactase, lactose, sodium alginate, magnetite, stability


Lactase is a very important enzyme to cure lactose intolerance problem. However, it is naturally existing in soluble form and cannot be reused. The current study was performed to compare the productivity and stability of lactase immobilized on calcium alginate and magnetic chitosan. The reusability of immobilized enzyme was measured for 28 days. Thermal stability was measured at 27, 37, 50 and 70 ºC. Lactase immobilized on calcium alginate showed a better stability after 21 days where it retained up to 62% of enzyme activity. However, lactase on magnetic chitosan expresses a better thermal stability as it produced 6% more sugar than lactase on calcium alginate at the optimum temperature 50 ºC. Lactase immobilized on calcium alginate and magnetic chitosan showed significantly different enzymatic activity, stability, and reusability.

Author Biographies

Farah Syafiqah Mohd Zawawi, Universiti Sains Islam Malaysia

Fakulti Sains dan Teknologi

Latiffah Karim, Universiti Sains Islam Malaysia

Fakulti Sains dan Teknologi

Siti Radhiah Omar, Universiti Sains Islam Malaysia

Fakulti Sains dan Teknologi

Asma’ Ali, Universiti Malaysia Terengganu

Pusat pengajian Sains dan Teknologi Makanan


Ahmad, R., Sardar, M. 2015. Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4(2), pp. 1-8.

Belhacene, K. Grosu, E. F. Blaga, A. C. Dhulster, P. Pinteala, M. Froidevaux, R. 2015. Simple Eco-Friendly Β-Galactosidase Immobilization on Functionalized Magnetic Particles for Lactose Hydrolysis. Environmental Engineering & Management Journal (EEMJ), 14(3), pp. 1-8.

Chien, L. J. Lee, C. K. 2008. Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle.Biotechnology Bioengineering, pp. 223–230.

Chircov, C., Grumezescu, A. M., Holban, A. M. (2019). Magnetic Particles for Advanced Molecular Diagnosis. Materials (Basel, Switzerland), 12(13), 2158.

Domingues, L., Lima, N., Teixeira, J. A. 2005.Aspergillusnigerbgalactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3-4), pp. 1151–1154.

Elnashar, M., Hassan, M. E. 2014. Novel epoxy activated hydrogels for solving lactose intolerance. BioMed Research International, 2014, pp. 1-10.

Eş, I. Vieira, J. D. G., Amaral, A. C. 2015. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied Microbiology and Biotechnology, 99(5), pp. 2065-2082.

Eldin, M. S., El Enshasy, H. A., Hassan, M. E. 2012. Covalent immobilization of penicillin G acylase onto chemically activated surface of PVC membranes for 6-APA production from penicillin hydrolysis process. І-Optimization of Surface modification and its characterization. Journal of Applied Polymer Science, 124, pp. E27-E36.

Guzik, U., Hupert-Kocurek, K., Wojcieszyńska, D. (2014). Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules (Basel, Switzerland), 19(7), 8995–9018.

Fernandez-Lafuente, R. (2017). Special Issue: Enzyme Immobilization 2016. Molecules (Basel, Switzerland), 22(4), 601.

Gao, J., Jiang, Y., Lu, J., Han, Z., Deng, J., Chen, Y. 2017. Dopamine-functionalized mesoporous onion-like silica as a new matrix for immobilization of lipase Candida sp. Scientific reports, 7, pp. 99-125.

Haider, T., Husain, Q. 2007. Calcium alginate entrapped preparations of Aspergillusoryzae β galactosidase: its stability and applications in the hydrolysis of lactose. International Journal of Biological Macromolecules, 41(1), pp. 72-80.

Hassan, M. E., Tamer, T. M., Ahmed, O. M. 2016. Methods of Enzyme Immobilization. International Journal of Current Pharmaceutical Review and Research, 7(6), pp. 385-392.

Hertzler, S., Savaiano, D. A., Dilk, A., Jackson, K. A., Bhriain, S. N., Suarez, F. L. 2017. Nutrient considerations in lactose intolerance.In Nutrition in the Prevention and Treatment of Disease. Academic Press, pp. 875-892.

Index 3.1.9. 2012. Cross-linking polymers – alginate worms [Online]. Accessed October 20, 2019 from https://scribd.com/document/101302786/3-1-9.

Jurado, E., Camacho, F., Luzón, G., Vicaria, J. M. 2004. Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enzyme and Microbial Technology, 34(1), pp. 33-40.

Karasova, P., Spiwok, V., Mala, S., Kralova, B., Russell, N. J. 2002. Betagalactosidase activity in psychrophic microorganisms and their potential use in food industry. Czech Journal of Food Science, 20(2), pp. 43-47.

Kazenwadel, F., Wagner, H., Rapp, B. E., Franzreb, M. 2015.Optimization of enzyme immobilization microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7(24), pp. 10291-10298.

Leksmono, C. S., Manzoni, C., Tomkins, J. E., Lucchesi, W., Cottrell, G., Lewis, P. A. 2018.Measuring lactase enzymatic activity in the teaching lab. JoVE (Journal of Visualized Experiments), (138), pp. 54377.

Malik, T. F., Panuganti, K. K. 2019. Lactose intolerance. [Online]. Accessed November 18, 2019 from https://www.ncbi.nlm.nih.gov/books/NBK532285/

Mandal, S., Kumar, S. S., Krishnamoorthy, B., Basu, S. K. 2010.

Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Brazilian Journal of Pharmaceutical Sciences, 46(4), pp. 785-793.

Mahajan, R., Gupta, V. K., Sharma, J. (2010). Comparison and suitability of gel matrix for entrapping higher content of enzymes for commercial applications. Indian Journal of Pharmaceutical Sciences, 72(2), 223–228.

Marwaha, S., Kennedy, J. 2007. Whey-pollution problem and potential utilization. International Journal of Food Science & Technology, 23, pp. 323-336.

Nguyen, H. H., Kim, M. 2017. An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology, 26(6), pp. 157-163.

Pan, C., Hu, B., Li, W., Sun, Y. I., Ye, H., Zeng, X. 2009. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), pp. 208-215.

Pospiskova, K. Safarik, I. 2013. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohydrate Polymers, 96(2), pp. 545-548.

Radon, A. Drygala, A. Hawalek, L. Lukowiec, D. 2017. Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Material Characterization, 131, pp. 148-156.

Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Fernández-Lafuente, R. 2013. Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), pp. 6290-6307.

Saqib, S., Akram, A., Halim, S. A., Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79.

Sheldon, R. A., van Pelt, S. 2013. Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), pp. 6223-6235.

Shen, Q., Yang, R., Hua, X., Ye F., Zhang, W., Zhao, W. 2011. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 46, pp. 1565-1571.

Silvério, S. C., Macedo, E. A., Teixeira, J. A., Rodrigues, L. R. 2018. New β-galactosidase producers with potential for prebiotic synthesis. Bio resource Technology, 250, pp. 131-139.

Tian, X., Anming, W., Lifeng, H., Haifeng, L., Zhenming, C., Qiuyan, W., Xiaopu Y. 2009. Recent advance in the support and technology used in enzyme immobilization. African Journal of. Biotechnology, 8(19), pp. 4724–4733.

Wang, W., Li, Z., Wang, D. I. C. 2009.Immobilization of Enzymes on Functionalized Magnetic Nanoparticles for Efficient Biocatalysis. Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, 2, pp. 337-339.

Xie, W. L., Zang, X. Z. 2016. Immobilized lipase on core–shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry, 194, pp. 1283-1292.

Xiong, C., Wei, F., Li, W., Liu, P., Wu, Y., Dai, M., Chen, J. 2018. Mechanism of polyacrylamide hydrogel instability on high-temperature conditions. ACS Omega, 3(9), pp. 10716-10724.

Zhou, Q. Z., Chen, X. D. 2001. Effects of temperature and pH on the catalytic activity of the immobilized b-galactosidase from Kluyveromyceslactis. Biochemical Engineering Journal, 9(1), pp. 33–40.