Effects of extraction method on dry pulp yield and morphological properties of pineapple leaf fibre

Authors

  • Dayangku Intan Munthoub Universiti Teknologi Malaysia
  • Wan Aizan Wan Abdul Rahman
  • Lew Jin Hau
  • Rohah A. Majid Universiti Teknologi Malaysia
  • Lai Jau Choy Universit Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v16n3.1861

Keywords:

Fibre extraction, pineapple leaf fibre, sodium hydroxide, dry pulp yield, extraction method

Abstract

Pineapple leaves (PALs) are useful agro wastes which have the potentials to be used as an alternative source of non-wood natural fiber. In this study, different extraction methods had been investigated to identify the most feasible pineapple leaf fiber (PALF) extraction method, based on the dry pulp yield and the PALF morphology. The manual retting using a ceramic scrapper led to low yield of around 1.8 % (wt.), while water retting for 21 d led to about 6.0 % (wt.) yield of dark greenish dry pulp. Both methods resulted in PALFs which still contained with non-cellulosic residues, as verified by scanning electron microscopic (SEM) imaging. The chemical extraction of PALF using various NaOH solution concentrations (i.e. 1 to 20 % (wt.)) gave different yields. Based on the SEM images, clean and smooth surfaces of fibrils were observed when the NaOH solution concentrations applied at or higher than 6 % (wt.), implying that all impurities including lignin and wax had been completely removed. The mechanical-chemical extraction method produced significantly more dry pulp compared to the chemical extraction method at the same NaOH solution concentration. This is attributed to the fact that the crushed PAL has a larger surface area, thus providing more reaction possibilities with NaOH solution. Finally, it was found that the crushed PAL that cooked at 90 °C needed at least 90 min of cooking time to obtain satisfying whitish dry pulp.

Author Biographies

Rohah A. Majid, Universiti Teknologi Malaysia

Bioprocess and Polymer Engineering

Senior Lecturer

Lai Jau Choy, Universit Teknologi Malaysia

Bioprocess and Polymer Engineering

Senior Lecturer

References

Ardina, V., Irawan, B., Prajitno, D. H., and Roesyadi, A. 2018. Active alkali charge effect on kraft pulping process of acacia mangium and eucalyptus pellita in AIP Conf. Proc.. 2014, 9-15.

Arib, R. M. N., Sapuan, S. M., Ahmad, M. M. H. M., Paridah, M. T. and Khairul Zaman, H. M. D. 2006. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 27, 391-396.

Asim, M., Jawaid, M., Abdan, K., and Ishak, M. R. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J. Bionic Eng. 13, 426–435.

Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M. and Almutairi, Z. 2018. Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos. Struct. 202, 1330-1338.

Beckline, M., Yujun, S., Eric, Z., and Kato, M. S. 2016. Paper consumption and environmental impact in an emerging economy. J. Energy, Environ. Chem. Eng. 1, 1, 13-18.

Cherian, B. M., Leão, A. L., de Souza S. F., Thomas, S., Pothan, L. A., and Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725.

Daud, Z., Mohd Hatta, M. Z., Mohd Kassim, A. S., and Mohd, A. A. 2013. Suitability of Malaysia’s pineapple leaf and napier grass as a fiber substitution for paper making industry in EnCon 2013, 6th Engineering Conference. Energy Environ. 7, 1-4.

FAO, 2014. Pulp and paper capacities survey 2013-2018. Rome.

Feng, Z. and Alén, R. 2001. Soda-AQ pulping of reed canary grass. Ind. Crops Prod. 14, 1, 31-39.

Ferreira, A. C. H., Rodriguez, N. M., Neiva, J. N. M., Pimentel, P. G., Gomes, S. P., Campos, W. E., Lopes, F.

C. F., Mizubuti, I. Y., Moreira, G. R. 2019. In situ degradability of elephant grass ensiled with acerola by-product. Semin. Agrar. 40, 5, 2427–2438.

Haameem, M., Abdul Majid, M. S., Afendi, M., Marzuki, H. F. A., Fahmi, I., and Gibson, A. G. 2016. Mechanical properties of napier grass fibre/polyester composites. Compos. Struct. 136, 1–10.

Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. J., and Tschirner, U. 2009. Alkaline sulfite-anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Ind. Crops Prod. 29, 1, 27–36.

Jahan, L., A. and Pourali, K. 2019. Effect of alkaline pre-hydrolysis on soda pulping of wheat straw. Cellul. Chem. Technol. 53, 1–2, 79–85.

Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V. P., and Saravanakumar, S. S. 2019. Characterization of cellulose fibers in thespesia populnea barks: Influence of alkali treatment. Carbohydr.

Polym. 217, 178–189.

Kim, S., Park, J. M., Seo, J. W., and Kim, C. H. 2012. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour. Technol. 109, 229-233.

Laftah, W. A. and Abdul Rahaman, W. A. W. 2015. Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 4, 3, 254–261.

Lai, J. C., Rahman, W. A. W. A., and Toh, W. Y. 2013. Characterisation of sago pith waste and its composites. Ind. Crops Prod. 45, 319–326.

Low, J. H., Ghanbari, T., Rahman, W. A. W. A. and Majid, R. A. 2018.

Preparation and characterization of kenaf papers reinforced with tapioca starch:physicomechanical and morphological properties. J. Nat. Fibers. 15, 2, 191-203.

Low, J. H., Xun, L. Z., Yoon, L. W., Pang, M. M. and Wong, S. 2019. Exploration of tree pruning waste for papermaking. AIP Conf. Proc. 2137, 020008.

Majid, R. A., Mohamad, Z., Rusman, R., Zulkornain, A. A., Halim, N. A., Abdullah, M., Low, J. H. 2018. Development of tea waste/kapok fiber composite paper. Chem. Eng. Trans. 63, 457-462.

Mohamed, A. R., Sapuan, S. M., Shahjahan, M., and Khalina, A. 2009. Characterization of pineapple leaf fibers from selected Malaysian cultivars. J. Food, Agric. Environ. 7, 1, 235–240.

Panyasart, K., Chaiyut, N., Amornsakchai, T., and Santawitee, O. 2014. Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia. 56, 406 – 413.

Putra, A., Or, K. H., Selamat, M. Z., Mohd Nor, M. J., Hassan, M. H. and Prasetiyo, I. 2018. Sound absorption of extracted pineapple-leaf fibres. Appl. Acoust. 136, 9-15.

Ravindran, L., Sreekala, M. S., and Thomas, S. 2019. Novel processing parameters for the extraction of cellulose nanofibers (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. Int. J. Biol. Macromol. 131, 858–870.

Rezayati-Charani, P., Mohammadi-Rovshandeh, J., Hashemi, S. J. and Kazemi-Najafi, S. 2006. Influence of dimethyl formamide pulping of bagasse on pulp properties. Bioresour. Technol. 97, 18, 2435-2442.

Ridzuan, M. J. M., Abdul Majid, M. S., Khasrib, A., Gan, E. H. D., Razlan, Z. M. and Syahrullail, S. 2019. Effect of pineapple leaf (PALF), napier, and hemp fibres as filler on the scratch resistance of epoxy composites. J. Mater. Res. Technol. 8, 6, 5384-5395.

Rodríguez, A., Serrano, L., Moral, A., Pérez, A., and Jiménez, L. 2008. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresour. Technol. 99, 6, 1743-1749.

Rodríguez, A., Serrano, L., Moral, A., and Jiménez, L. 2008. Pulping of rice straw with high-boiling point organosolv solvents. Biochem. Eng. J. 42, 3, 243–247.

Saad, M. B. W., Oliveira, L. R. M., Cândido, R. G., Quintana, G., Rocha, G. J. M., and Gonçalves, A. R. 2008. Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme Microb.

Technol. 43, 2, 220–225.

Sarah, S., Rahman, W. A. W. A., Majid, R. A., Yahya, W. J., Adrus, N., Hasannuddin, A. K. and Low, J. H. 2018. Optimization of pineapple leaf fibre extraction methods and their biodegradabilities for soil cover application. J. Polym. Environ. 26, 1, 319–32.

Senthilkumar, K., Saba, N., Chandrasekar, M., Jawaid, M., Rajini, N., Alothman, O. Y. and Siengchin, S. 2019. Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr. Build Mater. 195, 423-432.

Sibaly, S. and Jeetah, P. 2017. Production of paper from pineapple leaves. J. Environ. Chem. Eng. 5, 5978-5986.

Wang, J., Deng, Y., Qian, Y., Qiu, X., Ren, Y., and Yang, D. 2016. Reduction of lignin color via one-step UV irradiation. Green Chem. 18, 3, 695–699.

Yusof, Y., Ahmad, A. R., Wahab, M. S., Mustapa, M. S. and Tahar, M. S. 2012. Producing paper using pineapple leaf fiber. Adv. Mater. Res. 383-390, 3382-3386.

Zin, M. H., Abdan, K., Mazlan, N., Zainuddin, E. S., Liew, K. E. and Norizan, M. N. 2019. Automated spray up process for pineapple leaf fibre hybrid biocomposites. Compos. B. 177, 107306.

Downloads

Published

15-06-2020