Development of carbon dioxide adsorbents from renewable and non-renewable sources: A review

Authors

  • Nur Aisyah Selamat Universiti Teknologi Malaysia
  • Abd Halim Md Ali Universiti Teknologi Malaysia
  • Mohd Rashid Mohd Yusof Universiti Teknologi Malaysia
  • Nurfatehah Wahyuny Che Jusoh Universiti Teknologi Malaysia
  • Nor Ruwaida Jamian Universiti Teknologi Malaysia
  • Khairunnisa Mohd. Pa'ad Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v16n5.1857

Keywords:

carbon precursor, renewable sources, non-renewable sources, adsorption

Abstract

High concentration of carbon dioxide in the atmosphere which consistently and gradually increased every year imposed a serious impact especially to the environment such as climate change and global warming. Several methods have been established to mitigate this issue such as through absorption and adsorption technique. Carbon dioxide absorption using amine-based absorbent have been commonly used due to its rapid reaction. However, it has several major drawbacks such as its production of harmful by-product and high-energy demand. Contrary to absorption method, adsorption of carbon dioxide via adsorbents is more simple, environmentally friendly and high-energy efficiency. Availability of several type of adsorbents provides key players with a broad choice of selection, for example carbon-based adsorbents. In this review, development process of carbon-based adsorbents from renewable and non-renewable sources such as biomass, polysaccharides, microorganisms, coal, petroleum, and synthetic polymers are summarized. Other than that, the physical and chemical properties of the prepared adsorbents which influenced the adsorption of carbon dioxide are also reviewed. This review is expected to stimulate sustainable development of carbon dioxide adsorbent which benefits both environment and industry.

Author Biographies

Nur Aisyah Selamat, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

Abd Halim Md Ali, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

Mohd Rashid Mohd Yusof, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

Nurfatehah Wahyuny Che Jusoh, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

Nor Ruwaida Jamian, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

Khairunnisa Mohd. Pa'ad, Universiti Teknologi Malaysia

Department of Chemical Process Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia

References

Abiko, H., Furuse, M., & Takano, T. (2010). Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors. Industrial health, 48(1), 52-60.

Adelodun, A. A., & Jo, Y. M. (2013). Integrated basic treatment of activated carbon for enhanced CO2 selectivity. Applied Surface Science, 286, 306-313.

Adelodun, A. A., Ngila, J. C., Kim, D. G., & Jo, Y. M. (2016). Isotherm, thermodynamic and kinetic studies of selective CO2 adsorption on chemically modified carbon surfaces. Aerosol and Air Quality Research, 16(12), 3312-3329.

Alabadi, A., Razzaque, S., Yang, Y., Chen, S., & Tan, B. (2015). Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chemical Engineering Journal, 281, 606-612.

Ariunaa, A., Liou, S. Y. H., Tsatsral, G., Purevsuren, B., Davaajav, Y., Chang, R. W., & Lin, C. J. (2018). Selective adsorption of greenhouse gases on the residual carbon in lignite coal liquefaction. Journal of the Taiwan Institute of Chemical Engineers, 85, 170-175.

Bhatta, L. K. G., Subramanyam, S., Chengala, M. D., Bhatta, U. M., Pandit, N., & Venkatesh, K. (2015). Investigation of CO2 adsorption on carbon material derived from Mesua ferrea L. seed cake. Journal of Environmental Chemical Engineering, 3(4), 2957-2965.

Botomé, M. L., Poletto, P., Junges, J., Perondi, D., Dettmer, A., & Godinho, M. (2017). Preparation and characterization of a metal-rich activated carbon from CCA-treated wood for CO2 capture. Chemical Engineering Journal, 321, 614-621.

Coromina, H. M., Walsh, D. A., & Mokaya, R. (2015). Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 4(1), 280-289.

Creamer, A. E., Gao, B., & Zhang, M. (2014). Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal, 249, 174-179.

Deng, S., Hu, B., Chen, T., Wang, B., Huang, J., Wang, Y., & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption Science & Technology, 21(1-2), 125-133.

Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., & Abu-Zahra, M. R. M. (2019). Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 29, 82-102.

Fan, X., Zhang, L., Zhang, G., Shu, Z., & Shi, J. (2013). Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon, 61, 423-430.

Fujiki, J., & Yogo, K. (2014). Carbon dioxide adsorption onto polyethylenimine-functionalized porous chitosan beads. Energy Fuels, 28, 6467-6474.

Fujiki, J., & Yogo, K. (2016). The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping. Chemical Communications, 52, 186-189.

Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T., & Steinfeld, A. (2011). Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 45, 9101-9108.

Helmlinger, L., Zhu, Y., Gensel, J., Neumeyer, T., Thater, S., Strube, F., . . . Altstadt, V. (2017). Application of amine-functionalized cellulose foam for CO2 capture and storage in the brewing industry. Journal of Renewable Material, 6, 219-225.

Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., & Sun, R. (2016). 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Advances, 6(19), 15788-15795.

Huang, P.-H., Cheng, H.-H., & Lin, S.-H. (2015). Adsorption of carbon dioxide onto activated carbon prepared from coconut shells. Journal of Chemistry 2015.

Keramati, M., & Ghoreyshi, A. A. (2014). Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E: Low-Dimensional Systems and Nanostructures, 57, 161-168.

Kumar, A., & Jena, H. M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651-658.

Lee, J. S. M., Parker, D. J., Cooper, A. I., & Hasell, T. (2017). High surface area sulfur-doped microporous carbons from inverse vulcanised polymers. Journal of Materials Chemistry A, 5(35), 18603-18609.

Lee, S. Y., Yoo, H. M., Park, S. W., Park, S. H., Oh, Y. S., Rhee, K. Y., & Park, S. J. (2014). Preparation and characterization of pitch-based nanoporous carbons for improving CO2 capture. Solid State Chemistry, 215, 201-205.

Li, D., Ma, T., Zhang, R., Tian, Y., & Qiao, Y. (2015). Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel, 139, 68-70.

Liu, S., Zhang, Y., Jiang, H., Wang, X., Zhang, T., & Yao, Y. (2018). High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environmental Chemistry Letters, 16, 605-614.

Padalkar, A., & Kadam, A. (2010). Carbon Dioxide as Natural Refrigerant. International Journal of Applied Engineering Research, 1(2), 261.

Parshetti, G. K., Chowdhury, S., & Balasubramanian, R. (2015). Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel, 148, 246-254.

Rao, L., Liu, S., Wang, L., Ma, C., Wu, J., An, L., & Hu, X. (2019). N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance. Chemical Engineering Journal, 359, 428-435.

Sarmah, M., Baruah, B. P., & Khare, P. (2013). A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA. Fuel Processing Technology, 106, 490-497.

Seema, H., Kemp, K. C., Le, N. H., Park, S. W., Chandra, V., Lee, J. W., & Kim, K. S. (2014). Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 66, 320-326.

Sevilla, M., & Fuertes, A. B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Energy Environmental Science, 4(5), 1765-1771.

Sevilla, M., Valle‐Vigón, P., & Fuertes, A. B. (2011). N‐doped polypyrrole‐based porous carbons for CO2 capture. Advanced Functional Materials, 21(14), 2781-2787.

Shen, W., He, Y., Zhang, S., Li, J., & Fan, W. (2012). Yeast‐based microporous carbon materials for carbon dioxide capture. ChemSusChem, 5(7), 1274-1279.

Shen, W., Zhang, S., He, Y., Li, J., & Fan, W. (2011). Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. Journal of Materials Chemistry, 21(36), 14036-14040.

Sivadas, D. L., Vijayan, S., Rajeev, R., Ninan, K., & Prabhakaran, K. (2016). Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon, 109, 7-18.

Sneddon, G., Ganin, A. Y., & Yiu, H. H. P. (2015). Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large scale carbon capture technology. Enegy Technology, 3, 249-258.

Valdebenito, F., Lovera, R. A. G., Cruces, K., Ciudad, G., Chinga-Carrasco, G., & Habibi, Y. (2018). CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. Sustainable Chemistry & Engineering, 1-42.

Wan, L., Wang, J., Feng, C., Sun, Y., & Li, K. (2015). Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture. Nanoscale, 7(15), 6534-6544.

Wang, J., Heerwig, A., Lohe, M. R., Oschatz, M., Borchardt, L., & Kaskel, S. (2012). Fungi-based porous carbons for CO2 adsorption and separation. Journal of Materials Chemistry, 22(28), 13911-13913.

Yang, M., Guo, L., Hu, G., Hu, X., Chen, J., Shen, S., . . . Fan, M. (2016). Adsorption of CO2 by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial and Engineering Chemistry Research, 55(3), 757-765.

Yoshida, H., Oehlenschlaeger, S., Minami, Y., & Terashima, M. (2002). Adsorption of CO2 on composites of strong and weak basic anion exchange resin and chitosan. Journal of Chemical Engineering of Japan, 35(1), 32-39.

Zhang, S., Ravi, S., Lee, Y. R., Ahn, J. W., & Ahn, W. S. (2018). Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption. Journal of Industrial and Engineering Chemistry.

Zhang, T., Zhang, Y., Jiang, H., & Wang, X. (2018). Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity. Environmental Science and Pollution Research, 1-11.

Zhu, K., Matalkah, F., Ramli, S., Durkin, B., Soroushian, P., & Balachandra, A. M. (2018). Carbon dioxide use in beneficiation of landfilled coal ash for hazardous waste immobilization. Journal of Environmental Chemical Engineering, 6(2), 2055-2062.

Zhu, X., Fu, Y., Hu, G., Shen, Y., Dai, W., & Hu, X. (2013). CO2 Capture with activated carbons prepared by petroleum coke and KOH at low pressure. Water, Air, and Soil Pollution, 224(1).

Downloads

Published

29-10-2020