Modification of pseudobrookite Fe1.7Mn0.3-xNixTiO5: Influence of Ni-substitution on the magnetic properties
DOI:
https://doi.org/10.11113/mjfas.v16n4.1758Keywords:
Pseudobrookite, Fe1.7Mn0.3-xNixTiO5, milling, modification, magnetic propertiesAbstract
In this study, the synthesis of pseudobrookite Fe1.7Mn0.3-xNixTiO5 with variations in composition (x = 0.01, 0.05, 0.1, and 0.15) using a mechanical milling technique has been performed. High purity powder of α-Fe2O3, TiO2, MnCO3, and NiO were prepared as raw materials. The mixture was milled for 5 hours using high energy milling equipment, and sintered at 1000 °C for 5 hours. The refinement result of X-ray diffraction profile shows that the all of pseudobrookite Fe1.7Mn0.3-xNixTiO5 samples have a single phase with particle size of less than 1 μm. The VSM result shows all the samples were ferromagnetic behavior. We concluded that the substitution Ni into Mn on the pseudobrookite Fe1.7Mn0.3-xNixTiO5 can change the magnetic properties of the material from paramagnetic to ferromagnetic through a mechanism of double exchange interaction.
References
Aljuraide, N. I., Mousa, M. A. A., Hessien, M., Qhatani M., Ashour, A., Wamocha H. L., Hamdeh, H. H., Ahmed, M. A. 2011. Structural properties of ferric pseudobrookite Fe2TiO5 powder prepared by a new method. International Journal of Nanoparticles, 4(1), 1-9.
Adi W. A., Rina, Th., M. 2015. Composition analysis of titanomagnetite and ilmenite from iron sand using neutron activation analysis as preliminary study for producing iron oxide and titanium dioxide. International Journal of Academic Research, Part A. 7(3).
Adi, W., A., Yunasfi, Y., Mashadi, M., Didin S., W., Mulyawan, A., Sarwanto, Y., Gunanto, Y., E., Taryana, Y. 2019. Electromagnetic Fields and Waves. ISBN: 978-1-78923-956-0, Metamaterial: Smart magnetic material for microwave absorbing material. United Kingdom: IntechOpen.
Chen, B., Chen, D., Kang, Z., Zhang, Y. 2015. Preparation and microwave properties of Ni-Co nanoferrites. Journal of Alloys and Compounds. 618, 222 – 226.
den Hoed, P., Luckos, A. 2011. Oxidation and reduction of iron-titanium oxides in chemical looping combustion: A phase-chemical description, Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles, 66(2), 249-263.
Gao, X., M., Li, M., W., Hou Y., L., Wang, C., Y. 2015. Characterisation of Fe2TiO5 nanocrystallites synthesised via homogeneous precipitation. Materials Research Innovations. 19(1), 1-6.
Hajalilou, A., Mazlan, S., A., Shameli, K. 2016. A comparative study of differet concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni-Zn ferrite. Journal of Physics and Chemistry of Solids. 96-97, 49 – 59.
Idris, F., M., Hashim, M., Abbas, Z., Ismail, S. 2016. Recent development of smart electromagnetic absorbers-based polymer-composites at gigahertz frequencies. Journal of Magnetism and Magnetic Materials. 405, 197 - 208.
Liu, Q., He, J., Yao, T., Sun, Z., Cheng, W., He, S., Xie, Y., Peng, Y., Cheng H.,, Sun, Y., Jiang, Y., Hu, F., Xie, Z., Yan, W., Pan, Z., Wu, Z.& Wei, S. 2014. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nature Communications, 1-7.
Mahmoud, M. H. H., Hessien, M. M., Alhadhrami, A. and Gobouri, A. A. 2018. Physicochemical properties of pseudobrookite Fe2TiO5 synthesized from ilmenite ore by co-precipitation route. Physicochemical Problems of Mineral Processing.
Narang, S., B., Kaur, P., Bahel, S. 2016. Complex permittivity, permeability and microwave absorbing properties of Co–Ti substituted strontium hexaferrite. Materials Science-Poland, 34(1), 19-24.
Ponmani, S., Vishnupriya, R., Rajeshwari T., Prabhu, M., R. 2018. Preparation and characterization of pseudobrookite (Fe2TiO5) nano composite for fuel cell applications. International Journal of Advance Engineering and Research Development (IJAERD) IC MNRE. 5, 1-5.
Ramezani, M., Davoodi, A., Malekizad, A. 2015. Synthesis and characterization of Fe2TiO5 nanoparticles through a sol–gel method and its photocatalyst applications. Journal of Materials Science: Materials in Electronics. 1-6.
Sarah Petit, Sigismund T.A.G. Melissen, Loraine Duclaux, Moulay Sougrati, T., Le Bahers, T., Sautet, P., Dambournet, D., Borkiewicz, O., Robert, C., L., Durupthy, O. 2016. How should iron and titanium be combined in oxides to improve photoelectrochemical properties? Journal of Physical Chemistry C, American Chemical Society, 120(43), 24521 - 24532.
Sardjono P., Adi, W., A. 2014. Thermal analysis and magnetic properties of lanthanum barium manganite perovskite. Journal of Advanced Materials Research, 896, 381-384.
Sarwanto, Y. and Adi, W. A. 2015. Effect of pseudobrookite Fe2+xTi1+xO5 composition on the changes in phase and parameter of crystal structure. Proceedings on National Seminar of X-ray and Neutron Scattering. 97-101.
Sarwanto Y., Adi, W., A. 2017. Modification of Pseudobrookite Fe2-xMnxTiO5 with solid state reaction method using a mechanical milling, IOP Conf. Series: Materials Science and Engineering, 202, 012073.
Seitz, G., Penin, N., Decoux, L., Wattiaux, A., Duttine, M. and Gaudon, M. 2016. The ferric pseudobrookite composition (Fe2TiO5), Inorganic.
Toby B., H. 2001. EXPGUI A Graphical User Interface for GSAS J. Appl. Crystallography, 34 210-221.
Xiao, W., Lu, X., Zou, X., Wei X. and Ding W. 2013. Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder. Transactions of Nonferrous Metals Society of China, 23, 2439−2445.