High Field Carrier Transport Properties of Al0.45Ga0.55N

Authors

  • Wesley Ooi Tat Lung Multimedia University
  • Cheang Pei Ling
  • You Ah Heng
  • Chan Yee Kit

DOI:

https://doi.org/10.11113/mjfas.v16n5.1753

Keywords:

Aluminium Gallium Nitride (AlGaN), avalanche photodiode, transport properties, impact ionization

Abstract

This work presented Monte Carlo (MC) simulation of Al0.45Ga0.55N to investigate the carrier transport properties in the high electric field region including impact ionization. The simulation investigates both electron and hole considering two non-parabolic conduction band and valence band respectively. The carriers’ drift velocity, energy and occupancy are simulated with respect to electric field at room temperature. The electron drift velocity peak at 2.70 × 107 cm/s with the electric field of 240 kV/cm. The electron starts to excite to higher valley at 170 kV/cm and has a spike in energy at 700 kV/cm due to the occurrence of impact ionization. The impact ionization rates are computed using modified Keldysh equation and it is shown that hole impact ionization rate is higher than that of electron for Al0.45Ga0.55N. This work also presents the impact ionization coefficient with hole dominating the impact ionization process above the electric field of 2.6 MV/cm.

Author Biography

Wesley Ooi Tat Lung, Multimedia University

Master Student

References

J. Y. Tsao, M. A. Hollis, R. J. Kaplar (2017). Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater, 1600501.

R. J. Kaplar, A. A. Allerman, A. M. Armstrong, M. H. Crawford, J. R. Dickerson, A. J. Fischer, A. G. Baca, E. A. Douglas (2017). Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices. ECS Journal of Solid State Science and Technology, 6 (2), Q3061-Q3066.

E. Monroy, F. Omnès, F. Calle (2003). Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci Technol., 2 (4), 33.

Z. Huang, J. Li, W. Zhang, H. Jiang (2013). AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Exp., 6 (5), 054101-1–054101-4.

J. Qu, J. Li, G. Zhang (1998). AlGaN/GaN heterostructure grown by metalorganic vapor phase epitaxy. Solid State Commun., 107 (9), 467–470.

K. X. Dong, D. J. Chen, B. B. Jin, X. H Jiang, J. P Shi (2016). Al0.4Ga0.6N/Al0.15Ga0.85N Seperate Absorption and Multiplication Solar-Blind Avalanche Photodiodes with a One-Dimensional Photonic Crystal Filter. IEEE Photon. Journal, 8 (4), 1–7.

P. Yuan, K. A. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. G. Streetman, J. C. Campbell, R. J. McIntyre (1999). A New Look at Impact Ionization—Part II: Gain and Noise in Short Avalanche Photodiodes. IEEE Trans. Electron Devices., 46 (8), 1632–1639.

S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, R. M. Biefeld (1999). The band gap of AlGaN alloys. Appl. Phys. Lett., 74, 3344.

H. Angerer, D. Brunner, F. Freudenberg,O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, H. J. Korner (1997). Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films. Appl. Phys. Lett., 71, 1504.

Z. Jie, G. Li-Wei, C. Yao, X. Pei-Qiang, D. Guo-Jian, P. Ming-Zeng, J. Hai-Qiang, Z. Jun-Ming, C. Hong (2009). Growth and Characteristics of Epitaxial AlxGa1−xN by MOCVD. Chinese Phys. Lett., 26, 068101.

F. Yun, M. A . Reshchikov, L. He, T. King, M. Hadis, W. N. Steve, and L. C. Wei (2002). Energy band bowing parameter in Al xGa1-xN alloys. J. Appl. Phys., 92, 4837.

Z. Dridi, B. Bouhafs, P. Ruterana (2002). First‐Principles Calculation of Structural and Electronic Properties of Wurtzite AlxGa1-xN, InxGa1-xN, and InxAl1-xN Random Alloys. phys. stat. sol. (c), 0 (1), 315–319.

M. Stutzmann, O. Ambacher, H. Angerer, C. E. Nebel, E. Rohrer (1998). Electrical and structural properties of AlGaN: A comparison with CVD diamond. Diamond and Related Materials, 7 (2–5), 123-128.

R. N. González, A. R. Serrato, A. P Amarillas, D. H. Galvan (2008). First-principles calculation of the band gap of AlxGa1-xN and InxGa1-xN. Rev. Mex. Fıs., 54 (2), 111–118.

Joachim Piprek (2007). Nitride Semiconductor Devices: Principle and Simulation. Portland Wiley-VCH, 32.

A. F. M. Anwar, S. Wu, R. T. Webster (2001). Temperature Dependent Transport Properties in GaN, AlxGa1-xN, and InxGa1-xN Semiconductors. IEEE Trans. Electron. Devices, 48 (3), 567-572.

N. Bachir, A. Hamdoune, N. E. C. Sari (2012). Electrical Transport in Ternary Alloys: AlGaN and InGaN and Their Role in Optoelectronic. InTech Semiconductor Laser Diode Technology and Applications, 2, 13 – 28.

Z. Yarar, M. Ozdemir (2010). Alloy Scattering Dependence of Electron Transport in AlGaN. Balk. Phys. Lett., 18 (181031), 237 – 242.

M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, P. P. Ruden (2001). Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Trans. Electron. Devices, 48 (3), 535 – 542.

E. Bellotti, F. Bertazzi (2012). A numerical study of carrier impact ionization in AlxGa1-xN. J. Appl. Phys., 111, 103711.

T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, E. Ozbay (2006). Experimental evaluation of impact ionization coefficients in AlxGa1-xN based avalanche photodiodes. Appl. Phys. Lett., 89, 183524.

C. Bulutay (2002). Electron initiated impact ionization in AlGaN alloys. Institute of Physic Publishing, Semiconductor Science and Technology, 17 (10), 59–62.

P. L. Cheang, E. K. Wong, L. L. Teo (2019). Avalanche characteristics in thin GaN avalanche photodiodes. Jpn. J. Appl. Phys., 58, 082001.

M. Hou, Z. Qin, C. He, L. Wei, F. Xu, X. Wang, B. Shen (2015). Study on AlGaN P-I-N-I-N Solar-Blind Avalanche Photodiodes with Al0.45Ga0.55N Multiplication Layer. Electron. Mater. Lett., 11(6), 1053-1058.

Downloads

Published

29-10-2020