Regularity of Geometric quadratic stochastic operator generated by 2-partition of infinite points

Authors

  • Siti Nurlaili Karim Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia. https://orcid.org/0000-0002-3756-9415
  • Nur Zatul Akmar Hamzah Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
  • Nasir Ganikhodjaev Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.

DOI:

https://doi.org/10.11113/mjfas.v16n3.1737

Keywords:

Infinite points, countable state space, quadratic stochastic operator, regular transformation

Abstract

In this research, we construct a class of quadratic stochastic operator called Geometric quadratic stochastic operator generated by arbitrary 2-partition  of infinite points on a countable state space , where . We also study the limiting behavior of such operator by proving the existence of the limit of the sequence  through the convergence of the trajectory to a unique fixed point. It is established that such operator is a regular transformation.

Author Biographies

Siti Nurlaili Karim, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.

Postgraduate Student,
Department of Computational and Theoretical Sciences, Kulliyyah of Science,
International Islamic University Malaysia,
Jalan Sultan Ahmad Shah,
Bandar Indera Mahkota,
25200 Kuantan, Pahang, Malaysia.

Nur Zatul Akmar Hamzah, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.

Assistant Professor,
Department of Computational and Theoretical Sciences, Kulliyyah of Science,
International Islamic University Malaysia, 
Jalan Sultan Ahmad Shah, 
Bandar Indera Mahkota, 
25200 Kuantan, Pahang, Malaysia.

Nasir Ganikhodjaev, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.

Professor,
Department of Computational and Theoretical Sciences, Kulliyyah of Science,
International Islamic University Malaysia, 
Jalan Sultan Ahmad Shah, 
Bandar Indera Mahkota, 
25200 Kuantan, Pahang, Malaysia.

References

Akin, E., & Losert, V. (1984). Evolutionary dynamics of zero-sum game. Journal of Mathematical Biology, 20, 231–258.

Akin, E. (1993). The General Topology of Dynamical Systems. USA: American Mathematical Society.

Bernstein, S. N. (1924). The solution of a mathematical problem related to the theory of heredity. Uchn Zapiski NI Kaf Ukr

Otd Mat, 1, 83–115.

Ganikhodjaev, N. N., Ganikhodjaev, R. N., & Jamilov, U. (2015). Quadratic stochastic operators and zero-sum game dynamics. Ergodic Theory and Dynamical Systems, 35(5), 1443–1473.

Ganikhodjaev, N., & Hamzah, N. Z. A. (2014a). Nonhomogeneous Poisson nonlinear transformations on countable infinite set. 3rd International Conference on Mathematical Applications in Engineering (ICMAE’ 14).

Ganikhodjaev, N., & Hamzah, N. Z. A. (2014b). On Gaussian nonlinear transformations. Simposium Kebangsaan Sains Matematik Ke-22 (SKSM22).

Ganikhodjaev, N., & Hamzah, N. Z. A. (2014c). On Poisson nonlinear transformations. The Scientific World Journal, 1–7.

Ganikhodjaev, N., & Hamzah, N. Z. A. (2015a). Geometric quadratic stochastic operator on countable infinite set. AIP Conference Proceedings, 1643(1), 706–712.

Ganikhodjaev, N., & Hamzah, N. Z. A. (2015b). Quadratic stochastic operators on segment [0,1] and their limit behavior. Indian Journal of Science and Technology, 8(30).

Ganikhodjaev, N., & Hamzah, N. Z. A. (2015c). On Volterra quadratic stochastic operators with continual state space. AIP Conference Proceedings, 1660, 050025.

Ganikhodjaev, R. N. (1993). Quadratic stochastic operators, Lyapunov functions, and tournaments. Russian Academy of Sciences. Sbornik Mathematics, 76, 489–506.

Ganikhodjaev, R. N. (1994). A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems. Mathematical Notes, 56(5–6), 1125–1131.

Ganikhodzhaev, N. N., & Zanin, D. V. (2004). On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex. Russian Mathematical Surveys, 59(3), 161–162.

Ganikhodzhaev, R., Mukhamedov, F., & Rozikov, U. (2011). Quadratic Stochastic Operators and Processes: Results and Open Problems. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 14(02), 279–335.

Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamic. UK: Cambridge University Press.

Jenks, R. D. (1969). Quadratic differential systems for interactive population models. Journal of Differential Equations, 5, 497–514.

Karim, S. N., Hamzah, N. Z. A., & Ganikhodjaev, N. (2019). A class of geometric quadratic stochastic operator on countable state space and its regularity. Malaysian Journal of Fundamental and Applied Sciences, 15(6), 872-877.

Kesten, H. (1970). Quadratic transformations: A model for population growth II. Advances in Applied Probability, 2, 179–229.

Losert, V. & Akin, E. (1983). Dynamics of games and genes: Discrete versus continuous time. Journal of Mathematical

Biology, 17(2), 241–251.

Lyubich, Y. I. (1978). Basic concepts and theorems of the evolution genetics of free populations. Russian Mathematical Surveys, 26, 51–123.

Lyubich, Y. I. (1992). Mathematical structures in population genetics. Berlin: Springer.

Mukhamedov, F., & Embong, A. F. (2015). On b-bistochastic quadratic stochastic operators. Journal of Inequalities and Applications, 2015(1).

Mukhamedov, F. (2000). On infinite dimensional Volterra operators. Russian Mathematical Surveys, 55(6), 1161–1162.

Ulam, S. (1960). A Collection of Mathematical Problems. New York: Interscience.

Volterra, V. (1931). Variations and fluctuations of the number of individuals in animal species living together in animal ecology. New York: McGrawHill.

Zakharevich, M. I. (1978). On behavior of trajectories and the ergodic hypothesis for quadratic transformations of the simplex. Russian Mathematical Surveys, 33, 265–266.

Downloads

Published

15-06-2020