The behavior of renormalizations of circle maps with rational rotation numbers and with Zygmund conditions
DOI:
https://doi.org/10.11113/mjfas.v16n4.1725Keywords:
Renormalization, circle maps, rotation number.Abstract
Let be one-parameter family of circle homeomorphisms with a break point, that is, the derivative has jump discontinuity at this point. Suppose satisfies a certain Zygmund condition which is dependent on parameter . We prove that the renormalizations of circle homeomorphisms from this family with rational rotation number of sufficiently large rank are approximated by piecewise fractional linear transformations in and -norms, depending on the values of the parameter and , respectively.
References
V. I. Arnol’d, Small denominators: I. Mappings from the circle onto itself. Izv. Akad. Nauk SSSR, Ser. Mat., 25, 21-86, (1961).
H. Akhadkulov, M. S. Md Noorani, S. Akhatkulov, Renormalizations of circle diffeomorphisms with a break-type singularity. Nonlinearity, 30(7), 2687--2717, (2017).
H. Akhadkulov, A. Dzhalilov, K. Khanin, Notes on a theorem of Katznelson and Ornstein. Discrete Contin. Dyn. Syst., 37(9), 4587-4609, (2017).
H. Akhadkulov, A. A. Dzhalilov, K. M. Khanin, On linearization of circle diffeomorphisms. Differential Equations and Dynamical Systems. Springer Proceedings in Mathematics & Statistics, Springer, vol 268, pp. 1-8, (2018).
S. Akhatkulov, M.S. Noorani and H. Akhadkulov, on the invariant measure of a piecewise-smooth circle homeomorphism of Zygmund class. Journal of Nonlinear Sciences and Applications, 10(1), p. 48-59, (2017).
H. Akhadkulov, M. S. Noorani, A. Saaban, S. Akhatkulov, Notes on Zygmund functions. International Journal of Pure and Applied Mathematics, 112(3), p 1-9, (2017).
F. Alsharari, H. Akhadkulov, S. Akhatkulov, Remarks on "smooth" functions, International Journal of Mathematical Analysis, 10(25), p.1221-1228, (2016).
A. Begmatov, Behavior of renormalizations of circle maps with rational rotation number, Uzbek Math. J., 2, 40-50, (2016).
A. S. Begmatov, A. A. Dzhalilov, D. Mayer: Renormalizations of circle homeomorphisms with a single break point. Discrete Contin. Dyn. Syst., 34(11), 4487- 4513, (2014).
M. Herman, Sur la conjugaison diffrentiable des diffomorphismes du cercle a des rotations. Publ. Math. Inst. Hautes, Etudes Sci., 49, 5-233, (1979).
J. Hu, D. Sullivan, Topological conjugacy of circle diffeomorphisms. Ergod. Theor. Dyn. Syst, 17(1), 173-186, (1997).
Y. Katznelson, D. Ornstein: The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergod. Theor. Dyn. Syst., 9, 643-680, (1989).
K. Khanin, Ya. Sinai, A New Proof of M. Herman’s Theorem. Comm. Math. Phys., 112, 89-101, (1987).
K. Khanin, Ya. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Russian Math. Surveys. 44, 69-99, (1989), translation of Uspekhi Mat. Nauk, 44, 57-82, (1989).
K. Khanin, A. Teplinsky, Herman’s theory revisited, Invent. Math., 178 (2), 333-344, (2009).
K. Khanin, E. Vul, Circle homeomorphisms with weak discontinuities. In proc. of Dynamical systems and statistical mechanics (Moscow, 1991), 57-98. Amer. Math. Soc, Providence, RI, (1991).
J. Moser, A rapid convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa Cl. Sci., 20(3), 499-535, (1966).
J. Stark, Smooth coniugacy and renormalisation for diffeomorphisms of the circle. Nonlinearity, 1, 541-575, (1988).
J.-C. Yoccoz, Conjugaison differentiable des diffeomorphismes du cercle dont le nombre de rotation verifie une condition diophantienne. Ann. Sci. Ec. Norm. Super., 17, 333-361, (1984).
A. Zygmund, Trigonometric series. Third Edition vol. I and II combined. Cambridge University Press. London (2002).