Application of Response Surface Methodology (RSM) for optimizing removal of Cr(VI) wastewater using Cr(VI)-reducing biofilm systems
DOI:
https://doi.org/10.11113/mjfas.v6n1.169Keywords:
Cr(VI)-reducing biofilm system, Cr(VI) wastewater| Central Composite Design(CCD), Response surface methodology (RSM),Abstract
Response surface methodology (RSM) involving central composite design (CCD) was employed to obtain optimal conditions for Cr
(VI) wastewater treatment by Cr (VI) reducing biofilm systems. On the basis of a CCD, RSM was used to determine the effect of initial
metal concentrations (40-100 mgL-1), nutrient supplementations (10-20%) and flowrate (3-6 mLmin-1) on the levels of response, i.e. Cr
(VI) reduction efficiency. A set of 20 experimental runs were needed for optimizing of the operating conditions. Quadratic regression
models with estimated coefficients were developed to describe the Cr (VI) reduction. Analysis of variance (ANOVA) showed a high
coefficient of determination (R2) value of 0.9941, thus ensuring a satisfactory adjustment of the second-order regression model with the
experimental data. Cr (VI) reduction had significant effect on all the three dependent variables. The experimental results show that Cr
(VI)-reducing biofilm systems could effectively reduce Cr (VI), 100% at the optimum conditions of initial metal concentration of 100
mgL-1, nutrient supplementation of 20% and flowrate of 3 mLmin-1. The experimental observations were in reasonable agreement with
the modelled values.
References
J. Guertin, J. A. Jacobs, C. A. Avakian, (2005). Chromium (VI) handbook. Florida. CRC Press.
P. Collery, I. Maymard, T. Thephanides, L. Khassanova, T. Collery, (2008). Metal ions in biology and medicine. Paris. John Libbey Eurotext.
L. Morales-Barrera, E. Cristiani-Urbina, Enzyme and Microbial Technology. 40 (2006) 107–113.
L. K. Wang, T. H. Yung, H. H. Lo. (2007). Hazardous industrial waste treatment. United States of America. CRC Taylor & Francis.
M. Owlad, M. K. Aroua, W. A. W. Daud, S. Baroutian. Water Air Soil Pollut. 200 (2009) 59–77.
A. Cordoba, P. Vargas, J. Dussan, Hazard. Mater. 151(2008) 274–279.
C. Quintelas, B. Fonseca, B. Silva, H. Figueiredo, T, Tavare, Bioresource Technology 100 (2009) 220-226.
Z. A. Zakaria, W.A. Ahmad, F. Razali, J. Samin, Water, Air and Soil Pollution 204 (2009) 195–203.
R. Elangovan, L. Philip, Engineering. 44 (2009) 174–186.
A. S. Stasinakis, N. S. Thomaidis, D. M. Themistokles, D. Lekkas, Chemosphere. 57 (2004) 1069–1077.
A.M.F. Orozcoa, E.M. Conteras, N.E. Zaritzky, Hazard Mater. (2009). Article in Press.
C. Ashwini, R. Poopal, S. Laxman, Hazard Mater. 169 (2009) 539–545.
E. D. Castillo. (2007). Process optimization. A statistical approach. N.York. Springer.
K. Bahadir, K. Orbahti, M.A. Rauf, Chem. Eng. 136 (2008) 25–30.
Z. A. Zakaria, W.A. Ahmad, S. Surif., Hazard Mater 146 (2007) 30–38.
S. F. Abdul Halim, A. H. Kamaruddin, W.J.N Fernado, Bioresource Tech. 100 (2009) 710-716.
Q. H. Pei, S. Shahir, A. S. Santhana Raj, Z.A. Zakaria, W. A. Ahmad, World J Microbiol Biotechnol 25 (2009) 1085–1093
Y.C. Juang, S. S Adav, D. J. Lee, J.Y. Lai, Appl Microbiol Biotechnol. 85 (2009) 383–388.
H. M. L. Scott, J.W. Costerton. (2003). Microbial Biofilm. United Kingdom. Cambridge University Press.
N. Nordin. (2006). Biosorption of Chromium (VI) from electroplating wastewater using Acinetobacter calcoaceticus genospecies 3 grown in
Liquid pineapple waste (LPW). B.Sc. Thesis. UTM, skudai.
A.H. Mat. 12 (2008) 48-52.
M. I. Ramirez, C. D. Perez, E. Vargas, H. R. Rosas, J. C. Garcia, C.Cervantes, Biometals. 21 (2008) 321–332.