Tuning of nonlinear optic response properties for ruthenium alkynyl complexes via computational-guided structural tailoring


  • Fazira Ilyana Abdul Razak Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia
  • Roswanira Abdul Wahab
  • Rosmawati Jamaludin
  • Aliyu Adamu




ruthenium, nonlinear optic, computational studies, Gaussian, ADF


Hartree Fock (HF) and density functional theory (DFT) methods based on a 3-21G set level were used to computationally assess the nonlinear optic (NLO) response of six ruthenium (Ru) arylalkynyl complexes. The low basis set of 3-21G was proved to provide adequate results with difference of only about 3% between calculation and experimental data. Substitution of Ru-phenyl with six simplified models of Ru-H and Ru-methyl complexes revealed that DFT-based calculations were more accurate than HF in estimating the NLO response. The calculated bond lengths and angles of Ru-methyl were in good agreement with Ru-phenyl. Given that the calculated C≡C stretching vibration and UV-vis maximum absorption for Ru-methyl was comparable to Ru-phenyl, with values corresponding to 2154.56 cm-1 and 460.93 nm, respectively. It was evident that Ru-H, Ru-methyl and Ru-phenyl complexes undergo intraligands π-π* and Laporte forbidden metal d-d transition. Henceforth, it is affirmed that calculations using simplified Ru-H complexes were as much as reliable as the full structure of Ru to assess the NLO response. Assessment of electron inductive effect on Ru-carbonyl (Ru-Co), Ru-cyclopentadienyl (Ru-Cp) and Ru- bipyridine (Ru-bpy) complexes revealed two absorption maxima that appeared in regions 320−375 nm and 382−460 nm, which represent an intraligand π-π* orbital and Laporte forbidden d-d-transition, respectively. Migration of electrons from Ru center to the bipyridine ligand suggests a greater electron acceptor effect than Ru center to the arylalkynyl group. However, Ru conjugated to an electron withdrawing group i.e. carbonyl tend to render lower NLO response while elevating HOMO - LUMO energy gap and Ru to Cα bond lengths.


M. H. Garcia, P. J. Mendes, M. P. Robalo, A. R. Dias, J. Campo, W. Wenseleers, E. Goovaerts. Compromise between conjugation length and charge-transfer in nonlinear optical η5-monocyclopentadienyliron (II) complexes with substituted oligo-thiophene nitrile ligands: Synthesis, electrochemical studies and first hyperpolarizabilities. Journal Of Organometallic Chemistry 692(14) (2007) 3027- 3041.

G. Grelaud, M. P. Cifuentes, F. Paul, M. G. Humphrey. Group 8 metal alkynyl complexes for nonlinear optics. Journal of Organometallic Chemistry 751 (2014) 181-200.

F. I. Abdul Razak. Iron, Ruthenium and Osmium alkynyl Complexes: Synthesis, Linear Optical and Computational Studies. PhD Dissertation, Australia National University. (2015).

P. D. Zoon, I. H. Van Stokkum, M. Parent, O. Mongin, M. Blanchard-Desce, A. M. Brouwer. Fast photo-processes in triazole-based push–pull systems. Physical Chemistry Chemical Physics 12(11) (2010) 2706-2715.

S. De, R. Mitra, A. Samuelson, P. K. Das. First hyperpolarizability of Ru-half- sandwich complexes: The effect of halogen atom substitution on the ancillary ligand. Journal of Organometallic Chemistry 785 (2015) 72-76.

K. A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey. Metal alkynyl complexes as switchable NLO systems. Coordination Chemistry Reviews 255(21-22) (2011) 2530-2541.

A. Merhi, G. Grelaud, K. A. Green, N. H. Minh, M. Reynolds, I. Ledoux, A. Barlow, G. Wang, M. P. Cifuentes, M. G. Humphrey. A hybrid ruthenium alkynyl/zinc porphyrin “Cross Fourchée” with large cubic NLO properties. Dalton Transactions 44(17) (2015) 7748-7751.

R. Thomas. Computational Organometallic Chemistry, Marcel Dekker Inc., New York, 2001.

E. I. Solomon, A. B. P. Lever. Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies, Wiley-Interscience, 1999.

A. Vlček Jr, S. Záliš. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews 251(3-4) (2007) 258-287.

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Physical Review 136(3B) (1964) B864.

B. O. Roos, R. Lindh, P. Å. Malmqvist, V. Veryazov, P. O. Widmark, Hartree – Fock Theory, Multiconfigurational Quantum Chemistry (2016) 43-58.

J. E. Mc Grady, T. Lovell, R. Stranger, M. G. Humphrey, Bonding of η1-acetylide ligands to electron-rich ruthenium centers: Can electron-withdrawing ligands induce significant metal-to-ligand back-bonding?, Organometallics 16(18) (1997) 4004-4011.

M. Rohr, M. Günther, F. Jutz, J.-D. Grunwaldt, H. Emerich, W. van Beek, A. Baiker. Evaluation of strategies for the immobilization of bidentate ruthenium-phosphine complexes used for the reductive amination of carbon dioxide. Applied Catalysis A: General 296(2) (2005) 238-250.

F. Paul, B. G. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas, J.-F. Halet, C. Lapinte. Bonding and substituent effects in electron-rich mononuclear ruthenium σ-Arylacetylides of the formula [(η2-dppe)(η5-C5Me5) Ru (C⋮ C)-1, 4-(C6H4) X][PF6] n (n= 0, 1; X= NO2, CN, F, H, OMe, NH2). Organometallics 25(3) (2006) 649-665.

M. Al-Noaimi, M. Sunjuk, M. El-khateeb, S. F. Haddad, A. Haniyeh, M. AlDamen. Cis–trans Isomerism in mixed-ligand ruthenium (II) complexes containing bis (phosphine) and azoimine ligands. Polyhedron 42(1) (2012) 66-73.

J. Valatin. Generalized hartree-fock method. Physical Review 122(4) (1961) 1012.

R. G. Parr, S. R. Gadre, L. J. Bartolotti. Local density functional theory of atoms and molecules. Proceedings of the National Academy of Sciences 76(6) (1979) 2522-2526.

T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer. Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+ G basis set for first‐row elements, Li–F. Journal of Computational Chemistry 4(3) (1983) 294-301.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, et al. Gaussian 09, Revision A.1, Gaussian Inc. Wallingford CT (2009).

T. Schlick. Theoretical and computational approaches to biomolecular structure. In molecular modeling and simulation: An interdisciplinary guide: An interdisciplinary guide (Vol. 21). (pp. 237-265) Springer Science & Business Media., (2010).

P. F. Pohan. Computational Calculation of Ruthenium and Alkynyl Complexes by Using Gaussian09. Degree Dissertation. Universiti Teknology Malaysia.Skudai. (2017).

M. Younus, N. J. Long, P. R. Raithby, J. Lewis, N. A. Page, A. J. White, D. J. Williams, M. C. Colbert, A. J. Hodge, M. S. Khan. Synthesis and characterisation of mono-acetylide and unsymmetrical bis-acetylide complexes of ruthenium and osmium: X-ray structure determinations on [(dppe) 2 Ru (Cl)(C≡C–C 6 H 4-p- NO 2)],[(dppe) 2 Ru (Cl)(C≡ C–C 6 H 3-o-CH 3-p-NO 2)] and [(dppm) 2 Os (C≡ C–C 6 H 4-p-CH 3)(C≡ C–C 6 H 4-p-NO 2)]. Journal of Organometallic Chemistry 578(1) (1999) 198-209.

N. Gauthier, N. Tchouar, F .d. r. Justaud, G. Argouarch, M. P. Cifuentes, L. Toupet, D. Touchard, J.-F. Halet, S. Rigaut, M. G. Humphrey. Bonding and electron delocalization in ruthenium (III) σ-arylacetylide radicals [trans-Cl (η2-

-C6H4X)]+(X= NO2, C (O) H, C (O) Me, F, H, OMe, NMe2): misleading aspects of the ESR anisotropy. Organometallics 28(7) (2009) 2253- 2266.

D. Kharbani, D. K. Deb, I. L. Mawnai, S. D. Kurbah, B. Sarkar, E. Rymmai. Pyrazole cleavage of tris (3, 5-dimethylpyrazolyl) borate with Ruthenium (II) complexes: Synthesis, structural characterization and DFT studies. Journal of Molecular Structure 1133 (2017) 264-270.

M. Y. Amusia, A. Msezane, V. Shaginyan. Density functional theory versus the hartree–fock method: Comparative assessment. Physica Scripta 68(6) (2003) C133.

K. Manjunatha, R. Dileep, G. Umesh, M. Satyanarayan, B. R. Bhat. All optical nonlinear and switching characteristics of a novel ruthenium complex. Optical Materials 36(6) (2014) 1054-1059.

S. K. Hurst, M. P. Cifuentes, J. P. Morrall, N. T. Lucas, I. R. Whittall, M. G. Humphrey, I. Asselberghs, A. Persoons, M. Samoc, B. Luther-Davies. Organometallic complexes for nonlinear optics. 22.1 quadratic and cubic hyperpolarizabilities of trans-bis (bidentate phosphine) ruthenium σ- arylvinylidene and σ-arylalkynyl complexes. Organometallics 20(22) (2001) 4664-4675.

E. Kulasekera, S. Petrie, R. Stranger, M. G. Humphrey. DFT calculation of static first hyperpolarizabilities and linear optical properties of metal alkynyl complexes. Organometallics 33(10) (2014) 2434-2447.

E. Kulasekera, S. Petrie, R. Stranger, M. P. Cifuentes, M. G. Humphrey, DFT/TD- DFT analysis of structural, electrochemical and optical data from mononuclear osmium and heterobinuclear osmium–ruthenium alkynyl complexes. Journal of Organometallic Chemistry 748 (2013)21-28.

C. E. Powell, M. P. Cifuentes, A. M. McDonagh, S. K. Hurst, N. T. Lucas, C. D. Delfs, R. Stranger, M. G. Humphrey, S. Houbrechts, I. Asselberghs. Organometallic complexes for nonlinear optics.: Part 27. Syntheses and optical properties of some iron, ruthenium and osmium alkynyl complexes. Inorganica Chimica Acta 352 (2003) 9-18.

R. Misra. Tuning of second-order nonlinear optical response properties of arylsubstituted boron-dipyrromethene dyes: Unidirectional charge transfer coupled with structural tailoring. The Journal of Physical Chemistry C 121(10) (2017) 5731-5739.

J. Prashanth, B. V. Reddy. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT. Journal of Molecular Structure 1155 (2018) 582-597.

N. Prabavathi, A. Nilufer, V. Krishnakumar. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation, conformational stability, NLO properties, HOMO-LUMO and NBO analysis of hydroxyquinoline derivatives by density functional theory calculations. Spectrochimica Acta

Part A: Molecular and Biomolecular Spectroscopy 114 (2013) 449-474.

M. I. Bruce, M. G. Humphrey, M. R. Snow, E. R. Tiekink. Cyclopentadienyl-ruthenium and-osmium chemistry: XXVII. X-CPh)(dppe)(η-C5H5) and of [Ru (L)(PPh3) 2 (η-C5H5)] X (L= C (OMe) Et, X= -2) (1986) 213-225.

I. R. Whittall, M. G. Humphrey, D. C. Hockless, B. W. Skelton, A. H. White. Organometallic complexes for nonlinear optics. 2. Syntheses, electrochemical studies, structural characterization, and computationally-derived molecular quadratic hyperpolarizabilities of ruthenium. sigma.-arylacetylides: X-ray Crystal Structures of Ru (C. tplbond. CPh)(PMe3)2(. eta.-C5H5) and Ru (C. tplbond. CC6H4NO2-4)(L)2(.eta.-C5H5)(L= PPh3, PMe3). Organometallics 14(8) (1995) 3970-3979.

M. A. Fox, J. E. Harris, S. Heider, V. Pérez-Gregorio, M.E. Zakrzewska, J. D. Farmer, D. S. Yufit, J. A. Howard, P. J. Low. A simple synthesis of trans-RuCl (CCR)(dppe) 2 complexes and representative molecular structures. Journal of Organometallic Chemistry 694(15) (2009) 2350-2358.

M. P. Cifuentes, M. G. Humphrey. Alkynyl compounds and nonlinear optics. Journal of Organometallic Chemistry 689(24) (2004) 3968-3981.