A study on preparation and characterization of carbon doped TiO2 nanotubes

Srimala Sreekantan, Roshasnorlyza Hazan, Zainovia Lockman, Ishak Mat


The present study is directed to clarify the influence of carbon doping on the degradation of methyl orange. TiO2 nanotubes were prepared by anodizing titanium foils in a two electrode configuration bath with titanium foil as the anode and platinum as the counter electrode. The electrochemical bath
consists of 1 M Na2SO4 with 0.7 g ammonium fluoride, NH4F. The nanotubes obtained were further doped with carbon via in-situ and ex-situ method. Incorporation of carbon on TiO2 via in-situ method is accomplished during the anodization process by introducing oxalic acid into electrolyte while the
ex-situ doping involves carbon incorporation into pre-fabricated TiO2 nanotube via flame annealing using carbon blackN330. Characterization such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray Analysis (EDX), and X-Ray Diffraction (XRD) are used to determine the surface
morphology, composition of dopants, and phases exists. Well ordered nanotube with good adherence and smooth surface was obtained for both methods. When the oxide was annealed, X-ray diffraction analysis revealed the presence of anatase and rutile phase. The photocatalytic properties of the
pure TiO2 and carbon doped TiO2 were tested for methyl orange degradation and the result indicated that the in-situ doped TiO2 has much better degradation than the ex-situ and pure TiO2. The percentage of methyl orange degradation for in-situ was 20% and 41% higher than ex-situ doped TiO2 and pure TiO2, respectively.


TiO2; Nanotube; Anodization; Carbon doping; Photodegradation;

Full Text:



M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69–96.

A. Fujishima, K. Hashimoto, T. Watanabe, BKC Inc., Tokyo, 1999.

Z. Liu, X. Zhang, S. Nishimoto, T. Mukarami, A. Fujishima, Environ. Sci. Technol. 42 (2008) 8547-8551.

V. S. Saji, H. C. Choe, W. A. Brantley, Acta Biomaterialia, 5 (2009) 2303-2310.

G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, J. Mater. Res, 19 (2004) 628-634.

K. Zhu, T. B, Vinzant, N. R. Neale, A. J. Frank, Nano Letters, 7 (2007) 3739-3746.

K.E. Karakitsou, X.E. Verykios, J. Phys. Chem. 97 (1993) 1184–1189.

W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98 (1994) 13669–13679.

H. Yamashita, M. Harada, J. Misaka, M. Takeushi, M. Anpo, J. Photochem. Photobiol. A 148 (2002) 257–261.

Wang H., Lewis J.P., Journal of physics: Condense Matter Vol. 18 (2006) 421-434.

T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, Jpn. J. Appl. Phys., Part 2 40 (2001) L561–L563.

Y. Aita, M. Komatsu, S. Yin, T. Sato, J. Solid State Chem. 177 (2004) 3235–3238.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.

Y.Wang, C.X. Feng, Z.S. Jin, J.W. Zhang, H.J. Yang, S.L. Zhang, J.Mol. Catal. A: Chem. 260 (2006) 1–3.

S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42 (2003) 4908–4911.

C.S.Kuo,Y.H. Tseng, C.H. Huang,Y.Y. Li, J. Mol. Catal. A: Chem. 270 (2007) 93–100.

J. Lin, R. Zong, M. Zhou, Y. Zhu, Appl. Catal. B: Environ., 89 (2009) 425-431.

T. Umebayashi, T. Yamaki, H. Ito, K. Asahi, Appl. Phys. Lett. 81 (2002) 454–456.

T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32 (2003) 364–365.

J.C. Yu, W.K. Ho, J.G. Yu, H. Yip, P.K.Wong, J.C. Zhao, Environ. Sci. Technol. 39 (2005) 1175–1179.

S. Sreekantan, R. Hazan, Z. Lockman, Thin Solid Film 518 (2009) 16-21

S. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong, A. R. Mohamed, Journal of Alloys and Compounds 485 (2009)478-483

S. Sreekantan, R. Hazan, K. A. Saharudin, I. Mat. MicroSoM (Buletin of the Electron Microscopy Society of Malaysia), 7 (2009) 7-9.

R. Hazan, S. Sreekantan, A. Abdul Khalil, I. M. S. Nordin, I. Mat., Journal of Physical Science, 20 (2009) 35-47.

S. Sreekantan, R. Hazan, Z. Lockman, Synthesis, Solid State Science and Technology, 17 (2009) 132-139.

N. A. Jani, Z.Lockman, S. Sreekantan, L. Schmidt-Mande, J. Driscoll , International Conference on X-Rays and related Technique in Research and

Industries (2008), 58

S. Bakardjieva, J. Subrt, V. Stengl, M. J. Dianez, M. J. Sayagues, Applied Catalysis B: Environmental 58 (2005) 193–202

J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed., 44 (2005) 7463-7465.

H.Habazaki, M.Uozomi, H.Konno, K.shimizu, P.Skeldon, G.E.Thompson, Corrosion Science, vol. 45, pp. (2003)2063-2073

Y.Li, D.S.Hwang, N.H. Lee, S.J.Kim. Chemical Physics Letters 404 (2005) 25-29

DOI: https://doi.org/10.11113/mjfas.v6n1.167


  • There are currently no refbacks.

Copyright (c) 2014 Srimala Sreekantan, Roshasnorlyza Hazan, Zainovia Lockman, Ishak Mat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2005-2019 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website.