Process optimization of supercritical CO2 extraction of Roselle using response surface methodology


  • Wong Lee Peng Universiti Teknologi Malaysia
  • Siti Hamidah Mohd Setapar SHE Empire Sdn Bhd
  • Hasmida Mohd Nasir Universiti Teknologi Malaysia



Roselle (Hibiscus sabdariffa), supercritical CO2 extraction, response surface methodology, fatty acid composition, optimization


Hibiscus sabdariffa, commonly known as Roselle, is a native plant in Malaysia that is rich with bioactive compounds. In the present study, supercritical carbon dioxide (SC-CO2) extraction of Roselle was investigated. The optimum particle size (212µm, 300µm, 425µm, 600µm, and 710µm) to obtain highest yield was pre-determined. The effects of two operating parameters, pressure (20MPa, 25MPa, and 30MPa) and temperature (40 ºC, 60 ºC, and 80 ºC) on extraction yield were studied using response surface methodology (RSM). From the experimental data, the optimum conditions were achieved using particle size 300µm, pressure 27.5MPa, and temperature 50.8 ºC. Using the optimized parameters, the highest extraction yield was predicted to be 163.26 mg-extract/g-dried sample. The validation experimental results were consistent with the predicted values.


Author Biographies

Wong Lee Peng, Universiti Teknologi Malaysia

Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research

Hasmida Mohd Nasir, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering


Amin, I., Emmy Hainida, K. I., Halimatul Saadiah, M. N. 2008. Roselle (Hibiscus sabdariffa L.) Seeds- nutritional composition, protein quality and health benefits. Global Science Book. 2(1), 1-16.

Ara, K. M., Karami, M., Raofie, F. 2014. Application of response surface methodology for the optimization of supercritical carbon dioxide extraction and ultrasound-assisted extraction of Capparis spinosa seed oil. J. Supercrit. Fluids. 85, 173-182.

Bimkr, M., Abdul Rahman, R., Taip, F. S., Mohd-Adzahan, N., Islam Sarker, M. Z., Ganjloo, A. 2013. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules. 18, 997-1014.

Chen, Z. C., Mei, X., Jin, Y. X., Kim, E. H., Yang, Z. Y., Tu, Y. Y. 2014. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. J. Sep. Sci. 94, 316-321.

Chuo, S. C., Mohd-Setapar, S. H., Ahmat, A., Lokhat, D. 2016. New Generation separation and identification methods for erythromycin. Der Pharmacia Letter. 19(8), 215-222.

Del Valle, J. M., Uquiche, E. L. 2002. Particle size effects on supercritical CO2 extraction of oil-containing seeds. J. Am. Oil Chem. Soc. 79(12), 1261-1266.

Giacomo, C., Matteo, B. 2015. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production. J. Agric. Eng. 46(3), 115-122.

Gomez, A. M., Lopez, C. P., de la Ossa, E. M. 1996. Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: A comparison with conventional solvent extraction. Chem. Eng. J. 61, 227-231.

Gu, L. B., Liu X. N., Liu H. M., Pang H. L., Qin G. Y. 2017 Extraction of Fenugreek (Trigonella foenum-graceum L.) Seed Oil Using Subcritical Butane: Characterization and Process Optimization. Molecules. 22(228), 1-14.

Gu, L. B., Pang, H. L., Lu, K. K., Liu, H. M., Wang, X. D., Qin, G. Y. 2016. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction. J. Sci. Food. Agric. 97(6), 1894-1903.

Lessoy, Z., Micael, B., Betty, F., Jean, G., Sebastian, N. 2012. Physiochemical and microbiological characterization of linolenic acid-rich oils from Seeds of two tropical plants: Corchorus olitorius and Hisbiscus sabdariffa L. Afr. J. Biotechnol. 11(39), 9435-9444.

Liza, M. S., Abdul Rahman, R. A., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I., Hamid, A. 2010. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food Bioprod. Process.88, 319–326.

Mohamed, R., Fernandez, J., Pineda, M., Aguilar, M. 2007. Roselle (Hibiscus sabdariffa) seed oil is a rich Source of γ- Tocopherol. J. Food Sci.72(3), 207-211.

Mohd-Setapar, S. H., Khatoon, A., Ahmad, A., Yunus, M. A. C., Ahmad Zaini, M. B. 2014. Use of supercritical CO2 and R134a as solvent for extraction of β-carotene and α-tocopherols from crude palm oil. Asian J. Chem. 18, 5911-5816.

Norodin, N. S. M., Salleh, L. M., Hartati., Mustafa, N. M. 2016. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds. Mater. Sci. Eng. 162, 12-30.

Nzikou, J. M., Bouanga-Kalou, G., Matos, L., Ganongo-Po., F. B., Mboungou-Mboussi, P. S., Moutoula, F. E., Panyoo-Akdowa, E., Silou, T. H., Desobry, S. 2011. Characteristic and nutritional evaluation of seed oil from Roselle (Hibiscus sabdariffa L.) in Congo-Brazzaville. Curr. Res. J. Biol. Sci. 3(2), 141-146.

Pan, S., Zhou, J., Li, H., Quan, C. 2013. Particle formation by supercritical fluid extraction and expansion process. Sci. World J. 2013, 1-6.

Tounkara, F., Sodio, B., Chamba, M. V. M., Le, G. W., Shi, Y. H. 2014. Nutritional and functional properties of Roselle (Hibiscus sabdariffa L.) seed protein hydrolysates. Emir. J. Sci. Food Agric. 26(5), 409-417.

Tseng, T., Chu, C., Chou, F., Lin, W., Wang, C. 2000. Induction of apoptosis by hibiscus protocheracterchuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and BCL-2 expression. Biochem. Pharmacol. 60, 307-315.

Wong, L. P., Mohd-Setapar, S. H., Khanafi, M. A., Idham, Z., Yunus, M. A. C., Zaini, M. A. A. 2014. Development of emulsification containing natural colorant from local plant (Roselle). Journal Teknologi Science and Engineering. 69, 15-17.

Zhao, L. C., Liang, J., Li, W., Cheng, K. M., Xia, X., Deng, X., Yang, G. L. 2011. The use of response surface methodology to optimize the ultrasound-assisted extraction of five anthraquinones from Rheum palmatum L. Molecules. 6, 5928-593.