Overview of the Sensitivity of Ge- and Al-doped Silicon Dioxide Optical Fibres to Ionizing Radiation

Authors

  • Lim Tou Ying
  • Husin Wagiran
  • Suhairul Hashim
  • Rosli Hussin

DOI:

https://doi.org/10.11113/mjfas.v8n4.164

Keywords:

Thermoluminescence response, Ionizing irradiation, Optical Fibre, Ge-doped, Al-doped,

Abstract

This paper reviews the thermoluminescence sensitivity of Ge- and Al- doped SiO2 optical fibre subjected to various ionizing radiations. It is found that the Ge- doped SiO2 optical fiber has the thermoluminescence response superior to Al-doped SiO2 optical fibre at certain energy and dose range in alpha, beta, photon and electron irradiation. High thermoluminescence intensity per unit dose goes to photon and electron irradiation than alpha and beta irradiation of lower energy. This probably due to the linear energy transfer that influence the dose deposition in the material as incident ionizing radiation striking the surface of Ge- and Al- doped SiO2 optical fibre. However, both doped SiO2 optical fibres show good linearity at studied dose range. It has been proven by researchers providing great potential as a dose absorbed measuring devices especially in radiotherapy energy and dose range.

References

F. Daniels, C. A. Boyd and D. F. Saunders, Science, 117 (1953), 343.

M. Puchalska and P. Bilski, Radiation Measurements, Vol. 41, Issue 6 (2006), 659-664

V. Pagonis and G. Kitis, Radiation Protection Dosimetry, Vol.101, Nos. 1-4 (2002), 93 – 98.

A. F. McKinlay, Thermoluminescence dosimetry, Adam Hilger Ltd, Great Britain, 1981.

R. Chen, S. W. S. McKeever, Radiation Measurements, Vol. 23, Issue 4 (1994), 667-673.

R. Chen, S. W. S. McKeever, Theory of thermoluminescence and related phenomena, World Scientific, 1997.

J. T. Randall and M.H. F. Wilkins, Proc. Roy. Soc. A, 184 (1945), 366.

G. F. J. Garlick and A. F. Gibson, Proc. Phys. Soc., 60 (1948), 574. [9] C. E. May and J. A. Partridge, J. Chem. Phys., 40 (1964), 1401. [10] A. J. J. Bos, Nucl. Instr. and Methods in Phys. Research B, 184 (2001), 3-28.

G. Kitis, J. M. Gomez-Ros and J. W. N. Tuyn, J. Phys. D, 31 (1998), 2636-2641.

M. R. Khanlary and P. D. Townsend, J. Phys. D :Appl. Phys., 26 (1992), 379-386.

N. H. Yaakob, H. Wagiran, I. Hossain, A.T. Ramli, D. A. Bradley, S. Hashim and H. Ali, Nucl. Instr and Methods in Phys. Research A, 637 (2011), 185-189.

S. Hashim, S. Al-Ahbabi, D. A. Bradley, M. Webb, C. Jeynes, A. T. Ramli and H. Wagiran, Appl. Radiat. and Isotopes, 67 (2009), 423–427.

N. H. Yaakob, H. Wagiran, I. Hossain, A.T. Ramli, D.A. Bradley, S. Hashim and H.Ali, Journal of Nuclear Science and Technology, 48 (7) (2011), 1115-1117.

G. Espinosa, J. I. Golzarri, J. Bogard and J. Garcίa-Macedo, Radiat. Prot. Dosim., 119 (1-4) (2006), 197- 200.

B. L. Justus, S. Rychnovsky, A. L. Houston, C. D. Merritt and K. J. Pawlovich, Radiat. Prot. Dosim., 74 (1997), 151–154.

A. L. Houston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning and R. Altemus, Radiat. Prot. Dosim., 101 (2002), 23–26.

G. Espinosa, J. I. Golzarri, C. Va´zquez and R. Fragoso, Radiat. Meas., 36 (2003), 175–178.

N. H. Yaakob, Master Thesis, UTM, 2011.

S. Hashim, Doctor of Philosophy, Universiti Teknologi Malaysia, 2009.

A. T. Ramli, D. A. Bradley, S. Hashim and H. Wagiran, Appl. Radiat. and Isotopes, 67 (2009), 428-432.

Downloads

Published

17-10-2012