Deposition of ultrasonic nebulized aerosols onto a hydrophilic surface
DOI:
https://doi.org/10.11113/mjfas.v16n3.1608Keywords:
Charged particles, Chemical treatment, Electric Potential, SubstrateAbstract
The effect of chemical treatment of a metallic substrate on the deposition of aerosols generated by an ultrasonic nebulizer was investigated. A single substrate with areas having different “level” of hydrophilicity (or hydrophobicity) was used as a model surface. The treated (more hydrophilic) area became more negatively-charged based on a surface electric potential meter. A low-pressure analysis method (electron-microscope image) and ordinary pressure methods (Raman spectroscopy and X-ray fluorescence) analytical results indicated that in comparison with the untreated area, the treated area trapped more particles in the case of the deposition of “wet” aerosols. In the case of the deposition of more “dry” aerosols, the untreated area trapped more particles rather than that of the treated one. The efficiency of particles deposition not only depended on the degree of hydrophilicity (or hydrophobicity) of the surface but also due to the conditions (wet or dry) of incoming aerosols.
References
J. B. Blaisot and J. Yon, Exp. Fluids 39 (2005) 977.
K. Triballier, C. Dumouchel, J. Cousin, Exp. Fluids 35 (2003) 347.
W. N. Wang, A. Purwanto, I. W. Lenggoro, K. Okuyama, H. Chang, H. D. Jang, Ind. Eng. Chem. Res. 47 (2008) 1650.
G. Gritzner, A. Buckuliakova, G. Plesch, K. Przybylski, M. Mair, Phys. C 304 (1998) 179.
C. S. Huang, J. S. Chen, C. H. Lee, J. Mater. Sci. 34 (1999) 727.
C. H. Lee, D. W. Kim, J. Ceram. Process. Res. 13 (2012) S377.
G. Xomeritakis, C. M. Braunbarth, B. Smarsly, N. Liu, R. Kohn, Z. Klipowicz, C. J. Brinker, Micropor. Mesopor. Mater. 66 (2003) 91.
K. Kusdianto, M. Gen, I. W. Lenggoro, J. Aerosol Sci. 78 (2014) 83.
K. Kusdianto, M.N. Naim, K. Sasaki, I. W. Colloids Surf. A: Physicochem. Eng. Aspects 459 (2014) 142.
K. W. Kim, S. I. Woo, K. H. Choi, K. S. Han, Y. J. Park, Solid State Ion. 159 (2003) 25.
B. Han, N. Hudda, Z. Ning, C. Sioutas, J. Aerosol Sci. 39 (2008) 770.
J. H. Jung, G. B. Hwang, J. E. Lee, G. N. Bae, Langmuir 27 (2011) 10256.
T. Oyabu, A. Ogami, Y. Morimoto, M. Shimada, W. Lenggoro, K. Okuyama, I. Tanaka, Inhal. Toxicol. 19 (2007) 55.
W. C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particle, John Wiley & Sons, Inc., (1999) (pp. 278-297).
M. N. Naim, N. F. Abu Bakar, M. Iijima, H. Kamiya, I. W. Lenggoro, Jpn. J. Appl. Phys. 49 (2010) 06GH17.
J. Park, J. Moon, Langmuir 22 (2006) 3506.
R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Phys. Rev. E 62 (2000) 756.
M. Darmawan, K. Jeon, J. M. Ju, Y. Yamagata, D. Byun, Sens. Actuators A-Phys. 205 (2014) 177.
M. Ali, R. N. Reddy, M. K. Mazumder, J. Electrost. 66 (2008) 401.
J. H. Seinfeld, S. N. Pandis, Atmospheric chemistry and Physics, John Wiley & Sons, Inc., (1998) (pp.465-474).
Downloads
Published
Issue
Section
License
Copyright (c) 2020 K. Kusdianto, Masao Gen, Mitsuki Wada, Sugeng Winardi, I Wuled Lenggoro
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.