Deposition of ultrasonic nebulized aerosols onto a hydrophilic surface

Authors

  • Kusdianto Kusdianto Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
  • Masao Gen School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
  • Mitsuki Wada Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
  • Sugeng Winardi Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Surabaya, 60111, Indonesia
  • Wuled Lenggoro Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo

DOI:

https://doi.org/10.11113/mjfas.v16n3.1608

Keywords:

Charged particles, Chemical treatment, Electric Potential, Substrate

Abstract

The effect of chemical treatment of a metallic substrate on the deposition of aerosols generated by an ultrasonic nebulizer was investigated. A single substrate with areas having different “level” of hydrophilicity (or hydrophobicity) was used as a model surface. The treated (more hydrophilic) area became more negatively-charged based on a surface electric potential meter. A low-pressure analysis method (electron-microscope image) and ordinary pressure methods (Raman spectroscopy and X-ray fluorescence) analytical results indicated that in comparison with the untreated area, the treated area trapped more particles in the case of the deposition of “wet” aerosols. In the case of the deposition of more “dry” aerosols, the untreated area trapped more particles rather than that of the treated one. The efficiency of particles deposition not only depended on the degree of hydrophilicity (or hydrophobicity) of the surface but also due to the conditions (wet or dry) of incoming aerosols.

References

J. B. Blaisot and J. Yon, Exp. Fluids 39 (2005) 977.

K. Triballier, C. Dumouchel, J. Cousin, Exp. Fluids 35 (2003) 347.

W. N. Wang, A. Purwanto, I. W. Lenggoro, K. Okuyama, H. Chang, H. D. Jang, Ind. Eng. Chem. Res. 47 (2008) 1650.

G. Gritzner, A. Buckuliakova, G. Plesch, K. Przybylski, M. Mair, Phys. C 304 (1998) 179.

C. S. Huang, J. S. Chen, C. H. Lee, J. Mater. Sci. 34 (1999) 727.

C. H. Lee, D. W. Kim, J. Ceram. Process. Res. 13 (2012) S377.

G. Xomeritakis, C. M. Braunbarth, B. Smarsly, N. Liu, R. Kohn, Z. Klipowicz, C. J. Brinker, Micropor. Mesopor. Mater. 66 (2003) 91.

K. Kusdianto, M. Gen, I. W. Lenggoro, J. Aerosol Sci. 78 (2014) 83.

K. Kusdianto, M.N. Naim, K. Sasaki, I. W. Colloids Surf. A: Physicochem. Eng. Aspects 459 (2014) 142.

K. W. Kim, S. I. Woo, K. H. Choi, K. S. Han, Y. J. Park, Solid State Ion. 159 (2003) 25.

B. Han, N. Hudda, Z. Ning, C. Sioutas, J. Aerosol Sci. 39 (2008) 770.

J. H. Jung, G. B. Hwang, J. E. Lee, G. N. Bae, Langmuir 27 (2011) 10256.

T. Oyabu, A. Ogami, Y. Morimoto, M. Shimada, W. Lenggoro, K. Okuyama, I. Tanaka, Inhal. Toxicol. 19 (2007) 55.

W. C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particle, John Wiley & Sons, Inc., (1999) (pp. 278-297).

M. N. Naim, N. F. Abu Bakar, M. Iijima, H. Kamiya, I. W. Lenggoro, Jpn. J. Appl. Phys. 49 (2010) 06GH17.

J. Park, J. Moon, Langmuir 22 (2006) 3506.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Phys. Rev. E 62 (2000) 756.

M. Darmawan, K. Jeon, J. M. Ju, Y. Yamagata, D. Byun, Sens. Actuators A-Phys. 205 (2014) 177.

M. Ali, R. N. Reddy, M. K. Mazumder, J. Electrost. 66 (2008) 401.

J. H. Seinfeld, S. N. Pandis, Atmospheric chemistry and Physics, John Wiley & Sons, Inc., (1998) (pp.465-474).

Downloads

Published

15-06-2020