Synthesis of carbon self-doped titanium dioxide and its activity in the photocatalytic oxidation of styrene under visible light irradiation

Siti Hajar Alias, Nurul Najidah Mohamed, Leaw Wai Loon, Sheela Chandren

Abstract


Carbon self-doped titanium dioxide (C/TiO2) photocatalyst was synthesized by a simple sol-gel method using titanium isopropoxide as both the titanium precursor and carbon source. The effects of calcination temperatures in the range of 300 to 700 °C to the structure and physicochemical properties of the C/TiO2 were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy, UV-visible diffuse reflectance (UV-Vis DR) spectroscopy, photoluminescence spectroscopy, N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). XPS results proved the presence of self-doped carbon at the interstitial and substitutional lattice of TiO2. The C/TiO2 calcined at 300 and 400 °C (C/TiO2-300 and C/TiO2-400, respectively) showed mesoporous characteristic and large surface area of about 100 m2 g-1. The C/TiO2 photocatalysts were then tested in the photo-oxidation of styrene under visible light irradiation with aqueous hydrogen peroxide as the oxidizing agent. The C/TiO2 photocatalysts were successfully activated under the irradiation of visible light, where C/TiO2-300 and C/TiO2-400 showed the highest total concentration of products (benzaldehyde and styrene oxide) at 1.1 mmol and 1.0 mmol, respectively.

For video presentation, kindly please visit this link:


Keywords


Titanium dioxide, carbon doped, photocatalytic activity, styrene, photo-oxidation

Full Text:

Video PDF

References


Astorino, E., Peri, J. B., Willey, R. J., Busca, G. 1995. Spectroscopic Characterization of silicate-1 and titanium silicate-1. J. Catal., 157, 482–500.

Choi, Y., Umebayashi, T., Yoshikawa, M. 2004. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci., 39, 5, 1837–1839. doi: 10.1023/B:JMSC.0000016198.73153.31.

Ganesan, N. M., Muthukumarasamy, N., Balasundaraprabhu, R., Senthil, T. S. 2015. Importance of carbon (prepared from Azadirachta indica) for photocatalytic applications. Optik (Stuttg). Elsevier GmbH., 126, 22, 3317–3320. doi: 10.1016/j.ijleo.2015.07.129.

Gorska, P., Zaleska, a, Suska, a, Hupka, J. 2009. Photocatalytic Activity and Surface Properties of Carbon-Doped Titanium Dioxide. Physicochem. Probl. Miner. Process., 43, 43, 21–30.

Hamal, D. B., Klabunde, K. J. 2007. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci., 311, 2, 514–522. doi: 10.1016/j.jcis.2007.03.001.

Hanaor, D. a H., Sorrell, C. C. 2011. Review of the anatase to rutile phase transformation. J. Mater. Sci., 46, 4, 855–874. doi: 10.1007/s10853-010-5113-0.

Kao, L. H., Chen, Y. P. 2017. Characterization, photoelectrochemical properties, and surface wettabilities of transparent porous TiO2 thin films. J. Photochem. Photobiol. A Chem., 340, 109–119. doi:

1016/j.jphotochem.2017.03.011.

Kavitha, R., Devi, L. G. 2014. Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis. J. Environ. Chem. Eng. Elsevier Ltd., 2, 2, 857–867. doi: 10.1016/j.jece.2014.02.016.

Kumar, M. M., Badrinarayanan, S., Sastry, M. 2000. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films, 358, 1, 122–130. doi: 10.1016/S0040-6090(99)00722-1.

Lavand, A. B., Malghe, Y. S. 2015. Nano sized C doped TiO2 as a visible light photocatalyst for the degradation of 2,4,6- trichlorophenol. Adv. Mater. Lett., 6, 8, 695–700. doi: 10.5185/amlett.2015.5800.

Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., Maier, W. F. 2001. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B Environ., 32, 4, 215–227. doi: 10.1016/S0926-3373(01)00141-2.

Lim, G. T., Kim, K. H., Park, J., Ohk, S. H., Kim, J. H., Cho, D. L. 2010. Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process. J. Ind. Eng. Chem. The Korean Society of Industrial and Engineering Chemistry, 16, 5, 723–727. doi: 10.1016/j.jiec.2010.07.012.

Liu, G., Han, C., Pelaez, M., Zhu, D., Liao, S., Likodimos, V., Ioannidis, N., Kontos, A. G., Falaras, P., Dunlop, P. S. M., Byrne, J. A., Dionysiou, D. D. 2012. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology, 23, 29, 294003. doi: 10.1088/0957-4484/23/29/294003.

Liu, J., Zhang, Q., Yang, J., Ma, H., Tade, M. O., Wang, S., Liu, J. 2014. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. Royal Society of Chemistry, 50, 13971–13974. doi: 10.1039/C4CC05544F.

Liu, Y., Zhao, W., Zhang, X. 2008. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors. Electrochim. Acta 53, 53, 3296–3304. doi: 10.1016/j.electacta.2007.11.022.

Luna, M. D. G. de, Lin, J. C.-T., Gotostos, M. J. N., Lu, M.-C. 2016. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide. Sustain. Environ. Res. Elsevier Ltd, 26, 4, 161–167. doi: 10.1016/j.serj.2016.02.001.

Muniandy, L., Adam, F., Mohamed, A. R., Ng, E. P., Rahman, N. R. A. 2016. Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study. Surfaces and Interfaces Elsevier B.V., 5, 19–29. doi: 10.1016/j.surfin.2016.08.006.

Nur, H. 2006. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater. Sci. Eng. B, 133, 49–54. doi: 10.1016/j.mseb.2006.05.003.

Parayil, S. K., Kibombo, H. S., Wu, C.-M., Peng, R., Baltrusaitis, J., Koodali, R. T. 2012. Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrogen Energy Elsevier Ltd, 37, 10, 8257–8267. doi: 10.1016/j.ijhydene.2012.02.067.

Park, J.-W., Kim, D.-W., Seon, H.-S., Kim, K.-S., Park, D.-W. 2010. Synthesis of carbon-doped TiO2 nanoparticles using CO2 decomposition by thermal plasma. Thin Solid Films Elsevier B.V., 518, 15, 4113–4116. doi: 10.1016/j.tsf.2009.11.013.

Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W. 2009. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B Environ., 91, 355–361. doi: 10.1016/j.apcatb.2009.06.001.

Raja, K. S., Misra, M., Mahajan, V. K., Gandhi, T., Pillai, P., Mohapatra, S. K. 2006. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light. J. Power Sources, 161, 2, 1450–1457. doi: 10.1016/j.jpowsour.2006.06.044.

Shao, G. S., Liu, L., Ma, T. Y., Wang, F. Y., Ren, T. Z., Yuan, Z. Y. 2010. Synthesis and characterization of carbon-modified titania photocatalysts with a hierarchical meso-/macroporous structure. Chem. Eng. J. Elsevier B.V., 160, 1, 370–377. doi: 10.1016/j.cej.2010.03.011.

Simonsen, M. E., Søgaard, E. G. 2010. Sol-gel reactions of titanium alkoxides and water : influence of pH and alkoxy group on cluster formation and properties of the resulting products. J. Sol-Gel Sci. Technol., 53, 485–497. doi: 10.1007/s10971-009-2121-0.

Siti Hajar Alias 2019. Structure-photocatalytic activity relationship of carbon doped titanium dioxide analyzed by density functional theory and fuzzy logic graph. Unpublished Doctoral Thesis. Universiti Teknlogi Malaysia, Johor, Malaysia.

Yang, X., Cao, C., Erickson, L., Hohn, K., Maghirang, R., Klabunde, K. 2008. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J. Catal. Elsevier Inc., 260, 1, 128–133. doi: 10.1016/j.jcat.2008.09.016.

Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., Scarano, D., Petrini, G., Leofanti, G., Mantegazza, M. 1996. Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catal. Today, 32, 97–106.




DOI: https://doi.org/10.11113/mjfas.v15n2.1592

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Siti Hajar Alias, Nurul Najidah Mohamed, Leaw Wai Loon, Sheela Chandren

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright © 2005-2019 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website.