Synthesis and performance assessment of coconut fiber solid adsorbent for waste cooking oil purification as biodiesel feedstock


  • Rama Oktavian Department of Chemical Engineering, Brawijaya University
  • Bambang Poerwadi Department of Chemical Engineering, Brawijaya University
  • Mochamad Reza Pahleva Department of Chemical Engineering, Brawijaya University
  • Mochammad Wahyu Muharyanto Department of Chemical Engineering, Brawijaya University
  • Supriyono Supriyono Department of Chemical Engineering, Brawijaya University



Activated carbon, adsorption, coconut fiber, waste cooking oil


Waste cooking oil can be considered as an alternative biodiesel feedstock for replacing edible oils. However, this feedstock can not be directly used since it contains much impurities and high Free Fatty Acid (FFA) content. Thus, pre-treatment process is required to enhance the feedstock quality. Adsorption using activated carbon is one of various methods that can be applied to reduce FFA content which is relatively easy and cheap. Coconut fiber is biomass waste that can be utilized in activated carbon production. This work has successfully synthesized activated carbon from coconut fiber with activator medium of H3PO4 10% weight and carbonization temperature of 600 °C, indicated from yield, water content, ash content, and methylene blue adsorption capacity. The yield of carbonization process developed in this work reached 40% while the yield for water content, ash content, and methylene blue adsorption capacity were 2.5%, 2.3% and 1646.1 mg/g carbon, respectively which complied with SNI 06-3730-1995.  This adsorbent was tested on fixed bed adsorption column with FFA reduction reached up to 93% at waste cooking oil flowrate of 3 ml/min for 45 minutes operation time.


Ahmaruzzaman, M., Gupta, V. K. 2011. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res., 50(24), 13589-13613.

Alharbi, O. M. L., Basheer, A. A., Khattab, R. A., Ali, I. 2018. Health and environmental effects of persistent organic pollutants. J. Mol. Liq., 263, 442-453.

Ali, I., Alothman, Z. A., Alwarthan, A. 2017. Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq., 241, 123-129.

Asfaram, A., Ghaedi, M., Agarwal, S., Tyagi, I., Gupta, V. K. 2015. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv., 5, 18438 – 18450.

Bonassa, G., Schneider, L. T., Alves, H. J., Meier, T. R. W., Frigo, E. P., & Teleken, J. G. 2016. Sugarcane bagasse ash for waste cooking oil treatment applications. J. Environ. Chem. Eng. 4(4, Part A), 4091-4099.

Canakçi, M., & Ozsezen, A. N. 2010. Evaluating waste cooking oils as alternative diesel fuel. Gazi University Journal of Science, 18(1), 81-91.

Cvengroš, J., & Cvengrošová, Z., 2004. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioenergy, 27(2), 173-181.

Devaraj, M., Saravanan, R., Deivasigamani, R., Gupta, V. K., Gracia, F., Jayadevan, S. 2016. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq., 221, 930-941.

Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agrwal, S., Maity, A., Gupta, V. K. 2015. Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem. Eng. J., 268, 28-37.

Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava. 2011. Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C., 31(5), 1062-1067.

Gupta, V. K., Saleh, T. A. 2013. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environ. Sci. Pollut. R., 20(5), 2828–2843.

Gupta, V. K., Ali, I., Saleh, T. A., Siddiqui, M. N., Agarwal, S. 2013. Chromium removal from water by activated carbon developed from waste rubber tires. Environ. Sci. Pollut. R., 20(3), 1261–1268.

Gupta, V. K., Nayak, A., Agarwal, S., Tyagi, I. 2014. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. J Colloids Surface Sci., 417, 420-430.

Gupta, V. K., Atar, N. Yola, M. L., Üstündağ, Z., Uzun, L. 2014. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 48, 210-217.

Khan, T. A., Nazir, M., Ali, I., Kumar, A. 2017. Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab. J. Chem., 10, S2388-S2398.

Khani, H., Rofouei, M. K., Arab, P., Gupta, V. K., Vafaei, Z. 2010. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). J Hazard Mater. 183(1-3), 402-409.

Knothe, G., Krahl, J., & Van Gerpen, J. 2010. The Biodiesel Handbook (Second Edition) (pp. v): AOCS Press.

Kulkarni, M. G., & Dalai, A. K. 2006. Waste cooking oil-An economical source for biodiesel: A Review. Ind. Eng. Chem. Res., 45(9), 2901–2913.

Marchetti, J. M., Miguel, V. U., & Errazu, A. F. 2008. Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol., 89(8), 740-748.

Mittal, A., Mittal, J., Malviya, A., Gupta, V. K. 2010. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J. Colloid Interface Sci., 344(2), 497-507.

Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E., Agarwal, S. 2011. Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J. Colloid Interface Sci., 362(2), 457-462.

Phan, N.H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., Nguyen, T. H. 2006. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon, 44(12), 2569-2577.

Rashidi, N. A., Yusup, S., Loong, L. H. 2013. Kinetic studies on carbon dioxide capture using activated carbon. Chem. Eng. Trans. 35, 361-366.

Rashidi N.A., Yusup S. 2015. Effect of process variables on the production of biomass-based activated carbons for carbon dioxide capture and sequestration. Chem. Eng. Trans., 45, 1507-1512.

Saleh, T.A., Gupta, V. K. 2011. Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci., 362(2), 337-344.

Saleh, T. A., Gupta, V. K. 2012. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci., 371(1), 101-106.

Saleh, T. A., Gupta, V. K. 2014. Processing methods, characteristics and adsorption behavior of tires derived carbons: A review. Adv. Colloid Interface Sci., 211, 92-100

Sanjid, A., Kalam, M. A., Masjuki, H. H., Varman, M., Zulkifli, N. W. B. M., & Abedin, M. J. 2016, Performance and emission of multi-cylinder diesel engine using biodiesel blends obtained from mixed inedible feedstocks. J. Clean. Prod., 112, Part 5, 4114-4122.

Sanjid, A., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., Abedin, M. J., & Palash, S. M. 2014. Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod., 65, 295-303.

Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., Stephen, A. 2013a. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C., 33(1), 91-98.

Saravanan, R., Thirumal, E. Gupta, V. K., Narayanan, V., Stephen, A. 2013b. The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq., 177, 394-401.

Saravnan, R., Gupta, V. K., Prakash, T., Narayanan, V., Stephen, A. 2013c. Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J. Mol. Liq., 178, 88-93.

Saravanan, R., Joicy, S., Gupta, V. K., Narayan, V., Stephen, A. 2013d. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C, 33(8), 4725-4731.

Saravanan, R., Karthikeyan, N., Gupta, V. K., Thirumal, E., Thangadurai, P., Narayanan, V., Stephen A. 2013e. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C, 33(4), 2235-2244.

Saravanan, R., Gupta, V. K., Narayanan, V., Stephen, A. 2013f. Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq., 181, 133-141.

Saravanan, R., Gupta, V. K., Narayanan, V., Stephen, A. 2014a. Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J Taiwan Inst. Chem. E., 45(4), 1910-1917.

Saravanan, R., Gupta, V. K., Mosquera, E., Gracia, F. 2014b. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq., 198, 409-412.

Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., Stephen, A. 2015a. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci., 452, 126-133.

Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., Stephen, A. 2015b. ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv., 5, 34645- 34651.

Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., Gupta, V. K. 2016a. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq., 221, 1029-1033.

Saravanan, R., Khan, M. M., Gracia, F., Qin, J., Gupta, V. K., Stephen, A. 2016b. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep., 6, 3141.

Seixas F., Goncalves E., Olsen M., Gimenes M.L., Fernandes-Machado N. 2017. Activated carbon from sugarcane bagasse prepared by activation with CO2 and bio oil recuperation, Chem. Eng. Trans., 57, 139-144.

Sonkaew, R., & Chaisena, A. 2012. Regeneration of used frying palm oil by inorganic adsorbent combinations. Asian J. Chem. 24(2), 677-682.

Suhas, Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., & Kushwaha, S. 2016. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol., 216, 1066-1076.

Ullah, Z., Bustam, M. A., & Man, Z. 2015. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energ., 77, 521-526.