Microstructural characteristic of the 24Cr2SiMn super ferritic stainless steel synthesized using local Indonesian materials


  • Mohammad Dani Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia
  • Arbi Dimyati Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia
  • Parikin Parikin Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia
  • Fadli Rohman Center Facility for Electron Microscopy, RWTH Aachen University, 52074, Ahornstrasse 55, Aachen, Germany
  • Riza Iskandar Central Facility for Electron Microscopy (GFE), RWTH-Aachen, Ahornstrasse 55, D-52074 – Aachen, Germany
  • Aziz Khan Jahja Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia
  • Andon Insani Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia
  • Syahbuddin Syahbuddin Pancasila University, Department of Mechanical Engineering, Faculty of Technik, Srengseng Sawah, Jagakarsa,Jakarta 12640 Indonesia
  • Ching An Huang Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan




Super ferritic stainless steel, precipitates, XRD, HRPD, SEM, TEM


Precipitation is a key factor for the mechanical properties of material at high temperature application. It is important to study the formation and stability of precipitates in order to optimize the material properties. In this article, the author presents the preliminary results of the microstructure including precipitates formation in Fe-24Cr-2Si-0.8Mn (wt%) super ferritic stainless steel. Both the X-ray and the HRPD neutron diffraction pattern characterizations showed the first four characteristic reflections intensity with Miller indices corresponding to the (110), (200), (211), (220) diffraction planes that are typical for diffracting plan (hkl) of bcc system. The Scanning Transmission Electron Microscopy (STEM)-High Angle Angular Dark Field (HAADF) images and semi-quantitative Energy-Dispersive X-ray Spectroscopy (EDS) revealed the presence of chromium-carbide and chromium rich precipitates in rod-like shape with the size of about 700 nm in length and 250 nm in width. EDX semi-quantification results showed that the precipitate in the ferritic sample typically consists of 55.04 wt%C, 0.78 wt%Si, 35.42 wt%Cr, 0.68 wt%Mn, and 8.37 wt%Fe. Moreover, Selected Area Electron Diffraction (SAED) analysis revealed (Fe,Cr)7C3 as one of the chromium-carbide formed as precipitates. Finally, HRTEM images showed atomic structure of matrix and precipitates at dendrite boundaries at atomic level.

Author Biography

Mohammad Dani, Center for Science and Technology of Advanced Materials – BATAN, Kawasan Puspiptek Serpong, Tangerang 151314, Indonesia

Sarjana - Physics University of Indonesia, INDONESIA

Dip. -Ing.  RWTH-Aachen Germany

Dr. rer.nat. RWTH-Aachen Germany 


Amuda, M. O. H., Akintabi, E., Mridha, S., (2016), Ferritic stainless steel: Metallurgy, application and weldability, Materials Science and Materials Engineering, Elsevier.

Bella, A. M. T., Henderson, C. M. B., (2016). Rietveld refinement of the crystal structures of Rb2XSi5O12 (X=Ni, Mn). Crystallographic Communications, 72, pp.249–252.

Burnett, T. L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia,, A., Burke, M.G., Withers, P.J., (2016), Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy, 161, pp.119–129.

Carpenter, S. D., Carpenter, D., (2003), X-ray diffraction study of M7C3 carbide within a high chromium white iron, Materials Letters, 57, pp.4456-4459.

Dani, M., Parikin, Iskandar, R., Dimyati, A. (2017). Investigation on precipitations and defects of the Fe-24Cr-2Si-0.8Mn ferritic super alloy steel. Indonesian Materials Science Journals (Jurnal Sains Materi Indonesia), 18(4), pp.173–178.

Dani, M., Untoro P., Putra T. Y. S. P., Parikin, Mayer, J., Dimyati, A., (2015). Transmission electron microscopy characterization of high-temperature oxidation of Fe-20Cr-5Al alloy prepared by focused ion beam technique. Makara Journal of Technology, 19(2), pp.85–89.

David, S. A. , Siefert, J. A., Feng, Z., (2013). Welding and weldability of candidate ferritic alloys for future advanced ultra supercritical fossil power plants. Science and Technology of Welding and Joining, 18(8), pp. 631–651.

Effendi, N., Darwinto, T., Ismoyo, A. H., Parikin, (2014). 24-chromium ferritic steel magnetic properties. Indonesian Materials Science Journals (Jurnal Sains Materi Indonesia), 15(4), pp.187–191.

Effendi, N., Jahja, A. K., Bandriana, Adi, W. A. (2012). Some data of second sequence non standard austentic Ingot A2. Urania, Scientific Journal of Nuclear Fuel Cycle, 18(1), pp.48–58

Frølich, S., Leemreize, H., Jakus, A., Xiao, X., Shah, R., Birkedal, H., Almer, J. D., Stock, S. R. (2016). Diffraction tomography and rietveld refinement of a hydroxyapatite bone phantom. Journal of Applied Crystallography, 49(1), pp.103–109

Gingeli, A. D. B., Bhadeshia, H. K. D. H., Jones, D. G., Mawella, K. J. A. (1997). Carbide precipitation in some secondary harderned steel, Journal of Materials Science, 32, pp.4815-4820.

Guo, J., Lui, L. G., Li, Q., Sun, Y. L., Gao, Y. K., Ren, X. J., Yang, Q. X. (2013). Characterization on carbide of a novel steel for cold work roll during solidification process, Materials Characterization, 79, pp.100-109.

Harjo, S., Kawasaki, T., Gong, W., Aizawa, K. (2016). Dislocation characteristics in lath martensitic steel by neutron diffraction. Journal of Physics: Conference Series, 746, pp.1–7.

Humphreys, C. J. (2013). The significance of Bragg’s Law in electron diffraction and microscopy, and Bragg’s Second Law. Foundations of Crystallography, Acta Crystallography, A(69), pp.45–50.

Karantzalis, A.K., Lekatou, A., Mavros, H., (2009, Effect of destabilization heat treatment on the microstructure of high chromium cast iron: A microscopy examination approch, Journal of Materials Engineering Performance, 18, pp.1078-1085.

Ma, S., Xing, J., He, Y., Li, Y., Huang, Z., Lui, G., Geng., Q. (2015). Microstructure and crystallography of M7C3 carbide in chromium cast iron, Materials Chemistry and Physics, 161, pp.65-73.

Mitchell, D. R. G. (2008). Difftools: Electron diffraction software tools for digital micrograph, Microscopy Research and Technique, 71(8), pp.588-593.

OroginLab. (1999). [Software]. Northampton, M. A., USA.

Parikin, P., Dani, M., Jahja, A. K., Iskandar, R., Mayer, J. (2018). Crystal structure investigation of ferritic 73Fe 24Cr 2Si0.8Mn0.1Ni steel for multi purpose structural material applications. International Journal of Technology University of Indonesia, 9 (1), pp.78-88.

Shao, Y., Liu, C., Yue, T., Liu, Y., Yan, Z., and Li, H. (2018). Effect of static recrystallization and precipitation on mechanical properties of 00Cr12 ferritic stainless steel, Metallurgical and Materials Transaction B, 49(4), pp.1560-1567.

Stadelmann, P. (2012). Electron Microscopy Software Java Version, JEMS, ver. 3.3425U2012, CIME-EPFL, Lausanne, Switzerland.

Wieczerzak, K., Bala, P., Dzuirka, R., Tokarski, T., Cios, G, Koziel, T., Gondek, L., (2017), The effect of temperatur on the evolution of eutectic carbide and M7C3  M23C6 carbide reaction in the rapidly solidified Fe-Cr-C alloy, Journal of Alloys and Compounds, 658, pp.673-684.

Wieczerzak, K., Bala, P., Stepien, M., Cios, G, Koziel, T. (2015). Characterization of cast Fe-Cr-C alloy, Archieves of Metallurgy and Materials, 60(2), pp.779-782.

Wiengmoon, A., Pearce, J. T. H., Chairuangsri, T. (2011). Relationship between microstructure, hardness and corrosion resistance in 20 wt%Cr, 27 wt%Cr, and 36 wt%Cr high chromium cast iron, Materials Chemistry and Physics, 124, pp.739-748.

Yamamoto, K., Inthidech, S., Sasaguri, N., and Matsubara, Y. (2014). Influence of Mo and W on high temperature hardness of M7C3 carbide in high chromium white cast iron, Materials Transactions, 55(4), pp.684-689.