Proton magnetic resonance spectroscopy (1H-MRS) of human skeletal muscle at 1.5 Tesla: Potential applications in exercise - A pilot study

Authors

  • Nur Syahfinaz Hidayah Rusli Universiti Teknologi Mara
  • Faikah Zakaria Universiti Teknologi Mara
  • Farahnaz Ahmad Anwar Basha Universiti Teknologi Mara
  • Hairil Rashmizal Abdul Razak Universiti Putra Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n6.1509

Keywords:

1H-MRS, Muscle, Cr, CHO, NAA

Abstract

This research study aimed to evaluate metabolites in human skeletal muscles pre- and post-exercise non-invasively via proton magnetic resonance spectroscopy (1H-MRS). The upper legs of 6 lightly active male subjects underwent imaging pre- and post-exercise via 1.5 T MRI (TR/TE = 3500ms/100ms, FOV = 20cm, slice thickness = 6mm) and 1H-MRS (TR/TE = 2000ms/31ms, VOI = 20mm x 20mm x 35mm). The researchers measured the pre- and post-exercise metabolic readings (NAA, CHO, and Cr metabolites) for the vastus lateralis and semitendinosus muscles. A paired t-test was performed. In the vastus lateralis muscle, NAA, CHO, and Cr metabolites values decreased with no significant difference after the exercise. Similarly, in the semitendinosus muscle, NAA, CHO, and Cr metabolites values were also decreased with CHO (p<0.02) and Cr (p<0.01) showed the significant difference after the exercise. Evaluating human skeletal muscles via 1H-MRS at 1.5 T is feasible.

Author Biographies

Nur Syahfinaz Hidayah Rusli, Universiti Teknologi Mara

Centre of Medical Imaging

Faikah Zakaria, Universiti Teknologi Mara

Centre of Medical Imaging

Farahnaz Ahmad Anwar Basha, Universiti Teknologi Mara

Centre of Medical Imaging

Hairil Rashmizal Abdul Razak, Universiti Putra Malaysia

Faculty of Medicine and Health Sciences

References

Befroy, D. E., Shulman, G. I. (2011). Magnetic resonance spectroscopy studies of human metabolism. Diabetes, 60(5), 1361-1369.

Bell, D. J., Gaillard, F. (2018). MR Spectroscopy. Retrieved from https://radio paedia.org/articles/mr-spectroscopy-1

Boesch, C., Kreis, R. (2016). Muscle studies by 1H MRS. EMagRes, 5(2), 1097–1108.

Bogner-Strauss, J. G. (2017). N-acetylaspartate metabolism outside the brain: Lipogenesis, histone acetylation, and cancer. Frontiers in Endocrinology, 8(SEP), 1–5.

Buchman, A. L., Jenden, D., Roch, M. (1999). Plasma free, phospholipid-bound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. Journal of the American College of Nutrition, 18(6), 598–601.

Cannon, D. T., Howe, F. A., Whipp, B. J., Ward, S. A., McIntyre, D. J., Ladroue, C., Rossiter, H. B. (2013). Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise. Journal of Applied Physiology, 115(6), 839–849.

Chang, G., Wang, L., Schweitzer, M. E., Regatte, R. R. (2010). 3D 23Na MRI of human skeletal muscle at 7 Tesla: Initial experience. European Radiology, 20(8), 2039 -2046.

Chawla, S., Ge, Y., Lu, H., Marshall, O., Davitz, M. S., Soher, B. J., Hopkins, J. (2016). Whole-brain N-acetylaspartate concentration is preserved during mild hypercapnia challenge. American Journal of Neuradiology, 36(11), 2055-2061.

Clark, J. F. (1997). Creatine and phosphocreatine: A review of their use in exercise and sport. Journal of Athletic Training, 32(1), 45–51.

Conlay L. A., Sabounjian L. A., Wurtman, R. J. (1992). Exercise and neuromodulators: Choline and acetylcholine in marathon runners. International Journal of Sports Medicine, 13(Suppl 1), S141–S142.

D’Adamo, A. F., Yatsu, F. M. (1966). Acetate metabolism in the nervous system. N‐acetyl‐l‐aspartic acid and the biosynthesis of brain lipids. Journal of Neurochemistry, 13(10), 961-965.

Deshmukh, S., Subhawong, T., Carrino, J., Fayad, L. (2014). Role of MR spectroscopy in musculoskeletal imaging. Indian Journal of Radiology and Imaging, 24(3), 210-216.

Erickson, K. I., Weinstein, A. M., Sutton, B. P., Prakash, R. S., Voss, M. W., Chaddock, L., Kramer, A. F. (2012). Beyond vascularization: Aerobic fitness is associated with N-acetylaspartate and working memory. Brain and Behavior, 2(1), 32-41.

Fatehi, D., Naleini, F., Salehi, M. G., Afshari, D., Mirfendereski, S., Farzizadeh, M., Rostamzadeh, A. (2015). Traumatic spinal cord injury; Theranostic applications of advanced MRI techniques. Biomedical and Pharmacology Journal, 8(2), 891-903.

Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A., Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America, 23(1), 1-12.

Gonzales, M. M., Haley, A., Tarumi, T., Kaur, S., Nualnim, N., Fallow, B., Tanaka, H. (2014). Aerobic fitness and the brain: Increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults. Brain Topography, 26(1), 126–134.

Howe, F. A., Peet, A. C. (2016). Characterizing brain tumours by MRS. EMagRes, 5(1), 859-874.

Kreis, R., Jung, B., Slotboom, J., Felblinger, J., Boesch, C. (1999). Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. Journal of Magnetic Resonance, 137(2), 350-357.

Mueller-Lisse, U. G., Scherr, M. K. (2007). Proton MR spectroscopy of the prostate. European Journal of Radiology, 63(3), 351-360.

Pessentheiner, A. R., Pelzmann, H. J., Walenta, E., Schweiger, M., Groschner, L. N., Granier, W. F., Bogner-Strauss, J. G. (2013). NAT8L (N-acetyltransferase 8-like) accelerates lipid turnover and increases energy expenditure in brown adipocytes. Journal of Biological Chemistry, 288(50), 36040-36051.

Ploutz-Snyder, L. L., Nyren, S., Cooper, T. G., Potchen, E. J., Meyer, R. A. (1997). Different effects of exercise and oedema on T2 relaxation in skeletal muscle. Magnetic Resonance in Medicine, 37(5), 676-682.

Price, T. B., McCauley, T. R., Duleba, A. J., Wilkens, K. L., Gore, J. C. (1995). Changes in magnetic resonance transverse relaxation times of two muscles following standardized exercise. Medicine & Science in Sports & Exercise, 27(10), 1421–1429. Retrieved from http://scholar.google.com/scholar?hl= en&btnG=Search&q=intitle: Changes+in+magnetic+resonance+transverse+relaxation+times+of+two+muscles+following+standardized+exercise#0

See, H. H., Schmidt-Marzinkowski, J., Pormsila, W., Morand, R., Krähenbühl, S., Hauser, P. C. (2012). Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection. Analytica Chimica Acta, 727, 78–82.

Shin, H. J., Baek, H.-M., Cha, J. H., Kim, H. H. (2012). Evaluation of breast cancer using proton MR spectroscopy: Total choline peak integral and signal-to-noise ratio as prognostic indicators. AJR. American Journal of Roentgenology, 198(5), 488-497.

Sidek, S., Ramli, N., Rahmat, K., Ramli, N. M., Abdulrahman, F., Kuo, T. L. (2016). In vivo proton magnetic resonance spectroscopy (1H-MRS) evaluation of the metabolite concentration of optic radiation in primary open angle glaucoma. European Radiology, 26(12), 4404–4412.

Taylor, D. J., Phil, D. (2000). Clinical utility of muscle MR spectroscopy. Seminars in Musculoskeletal Radiology, 4(4), 481–502.

Von Allwörden, H. N., Horn, S., Kahl, J., Feldheim, W. (1993). The influence of lecithin on plasma choline concentrations in triathletes and adolescent runners during exercise. European Journal of Applied Physiology and Occupational Physiology, 67(1), 87–91.

Downloads

Published

04-12-2019