Biology characteristics of Aedes albopictus (Diptera: Culicidae) in Central Zones of Shah Alam, Selangor


  • Ibrahim Ahmed Alhothily Universiti Teknologi MARA
  • Nazri Che Dom Universiti Teknologi MARA
  • Siti Aekbal Salleh Universiti Teknologi MARA
  • Siti Rohana Mohd Yatim Universiti Teknologi MARA



Aedes albopictus, life table analysis, demographic parameter, Malaysia


Aedes sp. mosquitoes are the known vectors of dengue fever. The factors influencing the continuous occurrence of dengue fever have not yet been studied or fully understood. Therefore, this study was designed to assess the demographic parameter of Aedes albopictus (Diptera: Culicidae) in terms of their development, survival, and reproduction in Central Zone of Shah Alam. The study was conducted through ovitrap surveillance and mosquito rearing method. A total of 570 ovitraps were placed in nineteen (n=19) localities in the Central Zone of Shah Alam. Positive Ovitrap Index (POI) and mean eggs per trap (MET) was used to identify the infestation profile of dengue vectors in a locality. The biology and demographic parameters of dengue vector, such as development rate, survivorship and mortality rate were observed for each locality. Section 18 (POI: 73.3, MET: 35.05) was one of the localities that has high distribution and abundance of dengue vector. It was found that Section 24 was the locality with high development rate, high survivorship, and low mortality rate. These parameters were then used to formulate a life table for Aedes species mosquitoes in Central Zone of Shah Alam. As a conclusion life table analysis can be used to estimate the life cycle of the dengue vector. However, in-depth studies on the life table analysis need to be done in order to gain more understanding and so that authorized parties could plan for proper action to be taken.

Author Biographies

Ibrahim Ahmed Alhothily, Universiti Teknologi MARA

Centre of Environmental Health & Safety, Faculty of Health Sciences

Nazri Che Dom, Universiti Teknologi MARA

Centre of Environmental Health & Safety, Faculty of Health Sciences

Siti Aekbal Salleh, Universiti Teknologi MARA

Integrated Mosquito Research Group (I-MeRGe)

Siti Rohana Mohd Yatim, Universiti Teknologi MARA

Integrated Mosquito Research Group (I-MeRGe)


Beaty, B. J., Eisen, L. (2008). Needs and opportunities to control vector-borne diseases: Responses to the IOM microbial threats to health committee recommendations. Vector-borne diseases: understanding the environmental, human health and ecological connections institute of medicine. Washington DC: The National Academies Press.

Costa, E. A. P. D. A., Santos, E. M. D. M., Correia, J. C., Albuquerque, C. M. R. D. (2010). Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 54(3), 488-493.

Delatte, H., Gimonneau, G., Triboire, A., Fontenille, D. (2009). Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), 33-41.

Ditsuwan, T., Liabsuetrakul, T., Chongsuvivatwong, V., Thammapalo, S., McNeil, E. (2011). Assessing the spreading patterns of dengue infection and chikungunya fever outbreaks in lower southern Thailand using a geographic information system. Annals of Epidemiology, 21(4), 253-261.

Dye, T. R. (1992). Understanding Public Policy [by] Thomas R. Dye. Englewood Cliffs, N. J.: Prentice Hall.

Erickson, R. A., Presley, S. M., Allen, L. J., Long, K. R., Cox, S. B. (2010). A dengue model with a dynamic Aedes albopictus vector population. Ecological Modelling, 221(24), 2899-2908.

Focks, D. A. (2003). A review of entomological sampling methods and indicators for dengue vectors. Geneva: World Health Organization, WHO.

Gubler, D. J. (2010). The global threat of emergent/re-emergent vector-borne diseases. In P. W. Etkinson (Eds.), Vector Biology, Ecology and Control (pp. 39-62). Dordrecht, Netherlands: Springer.

Ghulam, A. (2010). Calculating surface temperature using Landsat thermal imagery. Retrieved from gis/activities2/student_handout_calculating_te.pdf

Hales, S., De Wet, N., Maindonald, J., Woodward, A. (2002). Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. The Lancet, 360(9336), 830-834.

Hassan, A. A., Dieng, H., Ahmad, H., Salmah, M. R. C., Satho, T., Saad, A. R., Vargas, R. E. M. (2012). Update on temporal and spatial abundance of dengue vectors in Penang, Malaysia. Journal of the American Mosquito Control Association, 28(2), 84-92.

Huang, Y. B., Chi, H. (2013). Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. Journal of Applied Entomology, 137(5), 327-339.

Husin, N. A., Salim, N. (2008). Modeling of dengue outbreak prediction in Malaysia: A comparison of neural network and nonlinear regression model. In 2008 International Symposium on Information Technology, 3, pp. 1-4.

Irvin, N., Hoddle, M. S., O'Brochta, D. A., Carey, B., Atkinson, P. W. (2004). Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 891-896.

Khasnis, A. A., Nettleman, M. D. (2005). Global warming and infectious disease. Archives of Medical Research, 36(6), 689-696.

Neto, P. L., Navarro-Silva, M. A. (2004). Development, longevity, gonotrophic cycle and oviposition of Aedes albopictus Skuse (Diptera: Culicidae) under cyclic temperatures. Neotropical Entomology, 33(1), 29-33.

Maimusa A. H. (2012). Larval development of Aedes albopictus (Skuse) (Diptera:Culicidae) under natural and laboratory conditions. Asian Journals of Biological Sciences, 3, 255-258.

Nur Aida, H. N., Abu Hassan, A., Nurita, A. T., Che Salmah, M. R., Norasmah, B. (2008). Population analysis of Aedes albopictus (Skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Tropical Biomedicine, 25(2), 117-125.

Nur Aida, H. N., Dieng, H., Ahmad, A. H., Satho, T., Nurita, A. T., Salmah, M. R. C., Miake, F., Norasmah, B. (2011). The biology and demographic parameters of Aedes albopictus in northern peninsular Malaysia. Asian Pacific Journal of Tropical Biomedicine, 1(6), 472-477.

Ríos-Velásquez, C. M., Codeço, C. T., Honório, N. A., Sabroza, P. S., Moresco, M., Cunha, I. C., Luz, S. L. (2007). Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Memórias do Instituto Oswaldo Cruz, 102(5), 617-623.

Rozilawati, H., Tanaselvi, K., Nazni, W. A., Masri, S. M., Zairi, J., Adanan, C. R., Lee, H. L. (2015). Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities, peninsular Malaysia. Tropical Biomedicine, 32(1), 49-64.

Serpa, L. L. N., Marques, G. R. A. M., de Lima, A. P., Voltolini, J. C., Arduino, M. de B., Barbosa, G. L., & de Lima, V. L. C. (2013). Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of Sao Sebastiao, Sao Paulo State, Brazil. Parasites & Vectors, 6(1), 1.

Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies? The Journal of Animal Ecology, 46, 337-365.

Sowilem, M. M., Kamal, H. A., Khater, E. I. (2013). Life table characteristics of Aedes aegypti (Diptera: Culicidae) from Saudi Arabia. Tropical Biomedicine, 30(2), 301-314.

Strickman, D., Kittayapong, P. (2002). Dengue and its vectors in Thailand: introduction to the study and seasonal distribution of Aedes larvae. The American Journal of Tropical Medicine and Hygiene, 67(3), 247-259.

Sutherst, R. W. (2004). Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Reviews, 17(1), 136-173.