Chitosan/silica composite membrane: Performance on water permeability and rejection of lead(II) ion from aqueous solution

Authors

  • Nurshahida Rosdi Universiti Teknologi Malaysia
  • Mohd Nazri Mohd Sokri Universiti Teknologi Malaysia
  • Muhammad Ikmal Fitri Hairul Anuar Universiti Teknologi Malaysia
  • Nor Asikin Awang Universiti Teknologi Malaysia
  • Norhana Mohamed Rashid Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v16n3.1489

Keywords:

Chitosan, silica, composite membrane, lead(II), rejection

Abstract

Heavy metal such as lead can be classified as non-biodegradable inorganic pollutants which can contaminate the soils, ground water, sediments and surface water. It cannot be broken down or decomposed by living organism and can continue to exist over a prolonged period, generating harmful effects to the living things. Thus, lead removal is necessary in order to reduce the amount of heavy metals contaminated in water. The purpose of this study was to fabricate chitosan/silica based composite membrane for removal of Pb(II) metal ions from aqueous solution by membrane filtration technique. The composite membranes were characterized in terms of morphological studies and functional group analysis by using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) analysis, respectively. The membrane permeation performance, in terms of water permeability and rejection of Pb(II) ions from aqueous solution, was conducted by using membrane permeation system. SEM images illustrated that the presence of macrovoids on the cross-section of the chitosan/silica composite membrane has improved the morphology of pure chitosan membrane and assisted in the rejection of Pb(II) ions. Meanwhile, FTIR-ATR spectra showed the presence of new adsorption peaks, contributed by silica interaction with hydroxyl group of chitosan. The addition of silica to chitosan membrane has significantly enhanced the pure water permeability from 37.36 L/m2h to 42.43 L/m2h. Furthermore, the rejection of Pb(II) metal ions by chitosan/silica composite membrane was slightly higher compared to pure chitosan membrane with the removal efficiency of 13.78% at 0.5 bar applied pressure. These findings indicates the potential use of silica to improve chitosan membrane properties and reduce heavy metal pollution in water.

Author Biographies

Nurshahida Rosdi, Universiti Teknologi Malaysia

Advanced Membrane Technology Centre (AMTEC)

Mohd Nazri Mohd Sokri, Universiti Teknologi Malaysia

Advanced Membrane Technology Centre (AMTEC)

Muhammad Ikmal Fitri Hairul Anuar, Universiti Teknologi Malaysia

School of Chemical and Energy Engineering, Faculty of Engineering

Nor Asikin Awang, Universiti Teknologi Malaysia

Advanced Membrane Technology Centre (AMTEC)

Norhana Mohamed Rashid, Universiti Teknologi Malaysia

School of Chemical and Energy Engineering, Faculty of Engineering

References

Abu-Saied, M. A., Wycisk, R., Abbassy, M. M., Abd El-Naim, G., El-Demerdash, F., Youssef, M. E., Bassuony, H., Pintauro, P. N. 2017. Sulfated chitosan/PVA adsorbent membrane for removal of copper and nickel ions from aqueous solutions-Fabrication and sorption studies. Carbo. Polym. 165, 149-158.

Azimi, A. Azari, A., Rezakazemi, M., Ansarpour, M. 2017. Removal of heavy metals from industrial wastewaters: A review. Chem. Bio. Eng. 4, 37-59.

Battegazzore, D., Bocchini, S., Alongi, J., Frache, A. 2014. Rice husk as bio-source of silica: preparation and characterization of PLA-silica bio-composites. Royal Soc. Chem. 4, 54703-54712.

Behera, S. S., Das, U., Kumar, A., Bissoyi, A., Singh, A. K. 2017. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibrolast cells: Application in wound dressing and skin regeneration. International J. Biological Macromol. 98, 329-340.

Budnyak, T. M., Pylypchuk, I. V., Tertykh, V. A., Yanovska, B. S., Kolodynska, D. 2015. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res. Lett. 10,1-10.

Budnyak, T. M., Tertykh, V. A., Yanovska, E. S., Kolodyńska, D., Bartyzel, A. 2015. Adsorption of V(V), Mo(VI) and Cr(VI) oxoanions by chitosan-silica composite synthesized by mannich reaction. J. Adsorpt. Sci. Technol. 33, 645-657.

Carolin, C. F., Kumar, P. S., Saravanam, A., Joshiba, G. J., Naushad, Mu. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 5, 2782-2799.

Cotruvo, J. Giddings, M., Jackson, P., Magara, Y., Festo Ngowi, A. V., Ohanian, E. 2011. Lead in drinking water. Backgr. Doc. For Development of WHO Guidel. for Drinking-water Quality. 4, 9-11.

Gunatilake, S. K. 2015. Method of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 1, 12-18.

Habiba, U., Afifi, A. M., Salleh, A., Bee, C. A. 2017. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 322, 182-194.

He, X., Du, M., Li, H., Zhou, T. 2016. Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int. J. Bio. Macromol. 82, 174-181.

Järup, L. 2003. Hazards of heavy metal contamination. Br. Méd. Bull. 68, 167-182.

Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z., Zhu, Y. 2012. A recyclable method for production of pure silica from rice hull ash. Powder Technol. 217, 497-501.

Mahatmanti, F. W., Nuryono, Narsito. 2016. Adsorption of Ca(II), Mg(II), Zn(II) and Cd(II) on chitosan membrane blended with rice hull ash silica and polyethylene glycol. Indones. J. Chem. 16(1), 45-52.

Nasef, M. M., Yahaya, A. H. 2009. Adsorption of some heavy metal ions from aqueous solutions of Nafion 117 membrane. Desalination. 249, 677-681.

Pode, R. 2016. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustainable Energy Rev. 53, 1468-1485.

Rekik, S. B., Gassara, S., Bouaziz, J., Deratani, A. Baklouti, S. 2017. Development and characterization of porous membranes based on kaolin/chitosan composite. Appl. Clay Sci. 143, 1-9.

Vlotman, D. E., Ngila, J. C., Ndlovu, T., Malinga, S. P. 2018. Hyperbranced polymer intergrated membrane for the removal of arsenic(III) in water. J. Membr. Sci. Res. 4, 53-62.

Zamani, A. A., Yaftian, M. R., Parizanganeh, A. 2012. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant. Iranian J. Environ. Health Sci. Eng. 9, 1-10.

Downloads

Published

15-06-2020