Fabrication of polycarbonate-based polymer optical fiber cladding: Effect of different solvents

Authors

  • Mohd Shahrizan Moslan Universiti Teknologi Malaysia
  • Mohd Hafiz Dzarfan Othman Universiti Teknologi Malaysia
  • Mukhlis A. Rahman Universiti Teknologi Malaysia
  • Ali Reza Samavati Universiti Teknologi Malaysia
  • Muhammad Aizi Salim Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n6.1475

Keywords:

Polymer optical fiber, dip-coating, polycarbonate core, PMMA cladding

Abstract

Normally, the cladding layer is fabricated by using heat through continuous extrusion, melt spinning, batch extrusion, and heat drawing technique. These techniques require high temperature precision in order to obtain the desired morphology of the cladding without compromising the quality of the polymer. Hence, in this study dip-coating method was utilized to coat the polycarbonate (PC) core with poly (methyl methacrylate) (PMMA) as a cladding part. The PC core was dipped into different cladding solutions using three types of organic solvent (i.e. Tetrahydrofuran (THF), N-Methyl-2-pyrrolidone (NMP), and Dimethylacetamide (DMAc) and subjected to post-treatment process. The thickness of fabricated cladding layer was ~10–15 μm for all coating solutions. The cladding prepared by THF exhibits transparent layer wrapping the core. However, the cladding layers for PMMA dissolved in NMP and DMAc showed translucent appearance. The THF/PMMA solvent displayed ~98 % transmittance at visible region which was higher than NMP/PMMA and DMAc/PMMA. The failure strain (3.6 %) and tensile strain (88.98 MPa) of THF/PMMA sample were higher compared to other solutions. Young’s modulus which measures the stiffness and represents the breakability of a solid material was lower for THF/PMMA. Therefore, the THF is the most appropriate solution for fabrication of PC-based POF cladding layer.

Author Biographies

Mohd Shahrizan Moslan, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Mohd Hafiz Dzarfan Othman, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Mukhlis A. Rahman, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Ali Reza Samavati, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Muhammad Aizi Salim, Universiti Teknologi Malaysia

Laser Center, Ibnu Sina Institute for Scientific and Industrial Research

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

References

Beckers, M., Schlüter, T., Vad, T., Gries, T. and Bunge, C.-A. (2015). An overview on fabrication methods for polymer optical fibers. Polymer International, 64(1), 25–36.

Bundalo, I., Nielsen, K., Markos, C., and Bang, O. (2014). Bragg grating in PMMA microstructured polymer optical fiber in less than 7 minutes. Optics Express, 22(5), 5270-5276.

Choi, D., Yeom, E. H., Park, M., Kim, J. K. and Kim, B. C. (2004). Preparation and properties of methyl methacrylate and fluoroacrylate copolymers for plastic optical fiber cladding. Journal of Applied Polymer Science, 93(5), 2082–2089.

Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., Rasmussen, H. K., Krebber, K. and Bang, O. (2016). Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Optical Materials Express, 6(2), 649-659.

Ishigure, T., Sato, M., Kondo, A. and Tsukimori, Y. (2002). Graded-index polymer optical fiber with high temperature and high humidity stability. Journal of Lightwave Technology, 20(10), 1818–1825.

Jin, Y., and Graville, A. (2016). Polymer fiber optics sensor - A mini review of their synthesis and applications. Journal of Biosensors & Bioelectronics, 07(01). 1-11

Leal-Junior, A., Frizera, A., Marques, C. and Pontes, M. J. (2018). Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments. Optical Fiber Technology, 43(April), 106–111.

Nakao, R., Kondo, A. and Koike, Y. (2012). Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2—Fiber fabrication and characterizations. Journal of Lightwave Technology, 30(7), 969–973.

Prado, A. R., Leal-Junior, A. G., Marques, C., Leite, S., de Sena, G. L., Machado, L. C., Frizera, A., Ribeiro, M. R. N. and Pontes, M. J. (2017). Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Optics Express, 25(24), 30051.

Pramod, K. and Gangineni, R. B. (2015). Influence of solvent evaporation rate on crystallization of poly(vinylidene fluoride) thin films. Bulletin of Materials Science, 38(4), 1093–1098.

Rout, T., Bera, S., Udayabhanu, G. and Narayan, R. (2016). Methodologies of application of sol-gel based solution onto substrate: A review. Journal of Coating Science and Technology, 3(1), 9–22.

Tanaka, A., Sawada, H., Takoshima, T. and Wakatsuki, N. (1988). New plastic optical fiber using polycarbonate core and fluorescence-doped fiber for high temperature use. Fiber and Integrated Optics, 7(2), 139–158.

Zhong, N., Liao, Q., Zhu, X., Zhao, M., Huang, Y. and Chen, R. (2015). Temperature-independent polymer optical fiber evanescent wave sensor. Scientific Reports, 5(1), 11508.

Downloads

Published

04-12-2019