Water transport properties of boron nitride nanosheets incorporated thin film nanocomposite membrane for salt removal

Authors

  • Tang Chun Yu Universiti Teknologi Malaysia
  • Zulhairun Abdul Karim Universiti Teknologi Malaysia
  • Wong Tuck Whye Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n6.1473

Keywords:

Thin film nanocomposite membrane, boron nitride, reverse osmosis.

Abstract

This work has focused on the fabrication of thin film composite (TFC) and thin film nanocomposite (TFN) membranes for reverse osmosis (RO) application. Raw boron nitride (BN) and chemically activated boron nitride (A-BN) were used as nanofillers in polysulfone support layer and trimesoyl chloride (TMC) to improve the membrane performance. Different concentrations of BN and A-BN (ranging from 0 to 1 wt %) were added to the polysulfone (PSf) microporous support and polyamide layer was formed on top of PSf support through interfacial polymerization of 1,3-Phenylendiamine and trimesoyl chloride. The fabricated TFN membranes were characterized in terms of membranes structure, contact angle, separation properties, as well as RO performance. According to AFM and SEM images, TFN membranes showed larger average pore size and higher surface roughness as compared with TFC membrane. Thus, TFN membrane showed higher pure water flux but lower NaCl rejection. The addition of BN led to increase in pore size of membrane without increase the selectivity of membrane. The addition of both BN and A-BN into polyamide layer does not aid to improve the properties of membrane. In conclusion, BN nanoparticles showed the potential to be used as nanofillers that aid in formation of larger pore size.

Author Biographies

Tang Chun Yu, Universiti Teknologi Malaysia

Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Zulhairun Abdul Karim, Universiti Teknologi Malaysia

Department of Chemistry, Faculty of Science

References

Sheikholeslami, R. 2009. Strategies for future research and development in desalination challenges ahead. Desalination, 248(1-3), 218-224.

Choi, W., Jeon, S., Kwon, S. J., Park, H., Park, Y., Nam, S., Lee, P. S., Lee, J. S., Choi, J., Hong, S., Chan, E. P., Lee, J. H. 2017. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. Journal of Membrane Science, 527, 121-128.

Cadotte, J. E., Petersen, R. J., Larson, R. E., Erickson, E. E. 1980. A new thin-film composite seawater reverse osmosis membrane. Desalination, 32, 25-31.

Lau, W. J., Ismail, A. F., Misdan, N., Kassim, M. A. 2012. A recent progress in thin film composite membrane: A review. Desalination, 287, 190-199.

Goh, P. S., Ismail, A. F., Ng, B. C. 2013. Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination, 308, 2-14.

Goh, P. S., Ismail, A. F. 2015. Graphene-based nanomaterial: The-state-of-the-art material for cutting edge desalination technology. Desalination, 356, 115-128.

Lai, G. S., Lau, W. J., Goh, P. S., Ismail, A. F., Yusof, N., Tan, Y. H. 2016. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination,

, 14-24.

Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. Chowdhury, Z. Z. 2014. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97-109.

Goldberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. 2010. Boron nitride nanotubes and nanosheets. American Chemical Society, 4(6), 2979-2993.

Hilder, T. A., Gordon, D., Chung, S. H. 2009. Salt rejection and water transport through boron nitride nanotubes. Small Journal, 5(19), 2183-2190.

Li, J., Huang, Y., Liu, Z., Zhang, J., Liu, X., Luo, H., Ma, Y., Xu, X., Lu, Y., Lin, J., Zou, J. 2015. Chemical activation of boron nitride fibers for improved cationic dye removal performance. Journal of Materials Chemistry A, 3(15), 8195-8193.

Wang, Y., Muramatsu, A., Sugimoto, T. 1998. FTIR analysis of well-defined α-Fe2O3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134(3), 281-297.

Ide, Y., Liu, F., Zhang, J., Kawamoto, N., Komaguchi, K., Bando, Y., Golberg, D. 2014. Hybridization of Au nanoparticle loaded TiO2 with BN nanosheets for efficient solar-driven photocatalysis. Journal of Material Chemistry A, 2(12), 4150-4156.

Lau, W. J., Ismail, A. F., Goh, P. S., Hilal, N., Ooi, B. S. 2014. Characterization methods of thin film composite nanofiltration membranes. Separation & Purification, 44(2), 135-156.

Wan Azelee, I., Goh, P. S., Lau, W. J., Ismail, A. F., Rezaei-DashtArzhandi, M., Wong, K. C., Subramaniam, M. N. 2017. Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination, 409, 163-170.

Khorshidi, B., Thundat, T., Fleck, B. A., Sadrzadeh, M. 2015. Thin film composite polyamide membranes: parameric study on the influence of synthesis conditions. Royal Society of Chemistry, 5(68), 54985-54997.

Zhong, J., Zhao, Y., Li, L., Francisco, J. S., Zheng, X. C. 2015. Interaction of NH2 radical with the surface of a water droplet. Journal of The American Chemical Society, 137(37), 12070-12078.

Falin, A., Cai, Q., Santos, E. J. G., Scullion, D., Qian, D., Zhang, R., Yang Z., Huang, S., Watanabe, K., Taniguchi, T., Barnett, M. R., Chen, Y., Ruoff, R. S., Li, L. H. 2017. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 15815.

Downloads

Published

04-12-2019