Enhanced gas separation performance of polysulfone membrane by incorporation of zeolite-templated carbon

Authors

  • Rika Wijiyanti Institut Teknologi Sepuluh Nopember
  • Anggita Rara Kumala Wardhani Institut Teknologi Sepuluh Nopember
  • Rosyiela Azwa Roslan Universiti Teknologi Malaysia
  • Triyanda Gunawan Institut Teknologi Sepuluh Nopember
  • Zulhairun Abdul Karim Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Nurul Widiastuti Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.11113/mjfas.v16n2.1472

Keywords:

Mixed matrix membrane, zeolite templated carbon, gas separation

Abstract

The zeolite-templated carbon (ZTC) with a unique structure was utilized as a new porous filler for preparing mixed matrix membrane (MMM). The zeolite-Y used as template was synthesized via hydrothermal method. The ZTC was prepared by impregnation of sucrose into the pore of zeolite-Y, followed by carbonization and template removal. The obtained ZTC was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 isotherm analysis. Results showed that the ZTC was amorphous and possess specific surface area of 1254 m2/g and 0.95 cm3/g for total pore volume. The MMM was fabricated by adding 0.4 wt% ZTC via dry/wet spinning process with polysulfone (PSF) as the matrix. The fabricated membranes were analyzed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and thermal gravimetric analysis (TGA), whereas the gas permeation properties were tested using single gases (CO2, O2, N2, CH4, and H2). The SEM results showed that incorporation of the ZTC was found to be similar as the morphological structure (dense layer and finger-like structure) of neat PSF membrane and the thermal stability was observed to be enhanced. In comparison to neat PSF membrane, uncoated PSF/ZTC MMM exhibited selectivities improvement for CO2/CH4 (290%), O2/N2(117%), CO2/N2 (219%) and H2/CH4 (272%), while coated PSF/ZTC MMM showed enhancement up to 1110%, 368%, 838%, and 802%, respectively with acceptable permeances. Compared to neat PSF membrane, profound selectivities enhancement could be achieved even with low ZTC loading inside the MMM.

Author Biographies

Rika Wijiyanti, Institut Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Science

Anggita Rara Kumala Wardhani, Institut Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Science

Rosyiela Azwa Roslan, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Center (AMTEC)

Triyanda Gunawan, Institut Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Science

Zulhairun Abdul Karim, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Center (AMTEC)

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Center (AMTEC)

Nurul Widiastuti, Institut Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Science

References

Anson, M., Garis, E., Marchese, J., Ochoa, N. 2004. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, 243(1-2), pp.19–28.

Antoniou, M. K., Diamanti, E. K., Enotiadis, A., Policicchio, A., Dimos, K., Ciuchi, F., Maccallini, E., Gournis, D., Agostino, R. G. 2014. Methane storage in zeolite-like carbon materials. Microporous and Mesoporous Materials, 188, pp.16–22.

Bernardo, P., Clarizia, G., 2013. 30 Years of Membrane Technology for Gas Separation. Icheap-11: 11th International Conference on Chemical and Process Engineering, Pts 1-4, 32, pp.1999–2004.

Dong, G., Li, H., Chen, V., 2013. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15), pp.4610–4630.

Goh, P. S., Ng, B. C., Ismail, A. F., Sanip, S. M., Aziz, M., Kassim, M. A. 2011. Effect of dispersed multi-walled carbon nanotubes on mixed matrix membrane for O2/N2 separation. Separation Science and Technology, 46(8), pp.1250–1261.

Junaidi, M. U. M., Leo, C. P., Ahmad, A. L., Ahmad, N. A., 2015. Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases. Microporous and Mesoporous Materials, 206(C), pp.23–33.

Kiadehi, A. D., Jahanshahi, M., Rahimpour, A., Ghoreyshi, A. A., 2014. Fabrication and evaluation of functionalized nano-titanium membranes for gas separation. Iranian Journal of Chemical Engineering, 11(4), pp.40–49.

Kim, S., Chen, L., Johnson, J. K., Marand, E., 2007. Polysulfone and functionalized Carbon Nanotube Mixed Matrix Membranes for Gas Separation: Theory and Experiment, 294, pp.147–158. United States: CRC Press.

Konwar, R. J., De, M., 2012. Development of templated carbon by carbonisation of sucrose-zeolite composite for hydrogen storage. International Journal of Energy Research, 39, pp 223-233.

Ma, Z., Kyotani, T., Tomita, A., 2000. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. Chemical Communications, pp.2365–2366.

Magueijo, V. M., Anderson, L. G., Fletcher, A. J., Shilton, S. J., 2013. Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chemical Engineering Science, 92, pp.13–20.

Mintova, S., Barrier, N., 2016. Verified syntheses of zeolitic materials. 3rdRevised Edition, p. 178-180. France: Synthesis Commission of the International Zeolite Association.

Nishihara, H., Hou, P.-X., Li, L.-X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., Kyotani, T. 2009. High-pressure hydrogen storage in zeolite-templated carbon. Journal of Physical Chemistry C, 113(8), pp.3189–3196.

Nishihara, H., Kyotani, T., 2012. Zeolite-templated carbon-its unique characteristics and applications. Novel Carbon Adsorbents, pp. 295-322.

Singh, K., Devi, S., Bajaj, H. C., Ingole, P., Chodhari, J., Bhrambhatt, H. 2014. Optical resolution of racemic mixtures of amino acids through nanofiltration membrane process. Separation Science and Technology, 49(17), pp.2630–2641.

Song, X. H., Xu, R., Wang, K., 2013. The structural development of zeolite-templated carbon under pyrolysis. Journal of Analytical and Applied Pyrolysis, 100, pp.153–157.

Su, F., Zhao, X. S., Lv, L., Zhou, Z., 2004. Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y. Carbon, 42(14), pp.2821–2831.

Weigelt, F., Georgopanos, P., Shishatskiy, S., Filiz, V., Brinkmann, T., Abetz, V. 2018. Development and characterization of defect-free Matrimid® mixed-matrix membranes containing activated carbon particles for gas separation. Polymers, 10(1), pp.51.

Wiryoatmojo, A. S., Mukhtar, H., Man, Z., 2010. Development of Polysulfone-carbon molecular sieves mixed matrix membranes for CO2 removal from natural gas. Chemical, Biological and Environmental Engineering - Proceedings of the International Conference on CBEE 2009. 9-11 October. Singapore: World Scientific, pp.249–253.

Xia, Y., Mokaya, R., Walker, G. S., Zhu, Y., 2011. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 1(4), pp.678–683.

Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R., Chai, S.-P. 2012. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. Journal of Natural Gas Chemistry, 21(3), pp.282–298.

Zornoza, B., Téllez, C., Coronas, J., 2011. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 368(1–2), pp.100–109.

Zulhairun, A. K., Subramaniam, M. N., Samavati, A., Ramli, M. K. N., Krishparao, M., Goh, P. S., Ismail, A. F. 2017. High-flux polysulfone mixed matrix hollow fiber membrane incorporating mesoporous titania nanotubes for gas separation. Separation and Purification Technology, 180, pp.13–22.

Zulhairun, A. K., Fachrurrazi, Z. G., Nur Izwanne, M., Ismail, A. F., 2015. Asymmetric hollow fiber membrane coated with polydimethylsiloxane-metal organic framework hybrid layer for gas separation. Separation and Purification Technology, 146(January 2018), pp.85–93.

Downloads

Published

15-04-2020