Solving a Mixed Boundary Value Problem via an Integral Equation with Generalized Neumann Kernel on Unbounded Multiply Connected Region

Authors

  • S.A.A. Alhatemi
  • A.H.M. Murid
  • M.M.S. Nasser

DOI:

https://doi.org/10.11113/mjfas.v8n4.147

Keywords:

Riemann-Hilbert Problem, Integral Equation, Generalized Neumann Kernel, Laplace Equation, Mixed Boundary Value Problem,

Abstract

In this paper, we solve the mixed boundary value problem on unbounded multiply connected region by using the method of boundary integral equation. Our approach in this paper is to reformulate the mixed boundary value problem into the form of Riemann-Hilbert problem. The Riemann-Hilbert problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the generalized Neumann kernel. As an examination of the proposed method, some numerical examples for some different test regions are presented.

References

M.M.S. Nasser, SIAM J. Sci. Compu. 31(2009)1695-1715.

R. Wegmann and M.M.S. Nasser, J. Comput. Appl. Math. 214(2008)36-57.

M.M.S. Nasser, Compu. Meth. Func. Theo. 9(2009)127(143).

M.M.S. Nasser, A.H.M. Murid, M. Ismail & E.M.A. Alejaily, Appl. Math. Compu. 217(2011)4710-4727.

F.D. Gakhov. Boundary value problem, English translation of Russian edition 1963. Oxford Pergamon Press, 1966.

S.A.A. Alhatemi, A.H.M. Murid ,M.M.S. Nasser, Proceedings in ISASM 2011, UTHM, KL, 1-3 NOV. 2011. 74-80.

M.M.S. Nasser, J. Math. Anal. Appl. 382(2011)47-56.

R. Haas and H. Brauchli, Comput. Meth. Appl. Mech. Engin. Vol 89, 1–3, 1991, 543–556.

R. Haas and H. Brauchli, J. Comput. Appl. Math 44(1992)167-185.

S.G. Mikhlin, Integral Equation and their applications to certain problems in mechanics, mathematical physics and technology, Pergamon, Armstrong, 1957.

K.E. Atkinson, The Numerical solution of Integral Equations of the Second Kind, Cambridge Univ. Press. 1997.

Downloads

Published

16-10-2014