Pilot scale study on characterization and performance of aerobic granular sludge to treat domestic wastewater

Authors

  • Hazlami Fikri Basri
  • Aznah Nor Anuar
  • Mohd Hakim Ab Halim

DOI:

https://doi.org/10.11113/mjfas.v16n1.1462

Abstract

Aerobic granular sludge (AGS) is a wastewater treatment technology that is known for having unique advantages such as great settling ability, high biomass level, good shock resistance, and able to withstand high organic loading rate (OLR) and toxic pollutants. Since studies on AGS development are mostly conducted in laboratory scale, the detailed knowledge regarding the pilot scale study is still limited especially for hot and humid tropical climate condition. Therefore, this study focused on the characteristics and performance of AGS cultivated in a pilot-scale bioreactor for hot and humid tropical climate condition, specifically in Malaysia. The formation of AGS as well as biomass concentration were also investigated during the treatment of real domestic wastewater. From the result, it was found that the highest average diameter of the cultivated mature granules was 3.36 mm with a biomass concentration of 12.48 g L−1 after 93 days of operation. The aerobic granular sludge also achieved promising removal rates of 89 %, 75 %, 96 %, and 93 % for COD, phosphate, ammoniacal nitrogen, and total inorganic nitrogen, respectively.

References

Ab Halim, M. H., Anuar, A. N., Jamal, N. S. A., Azmi, S. I., Ujang, Z., Bob, M. M. (2016). Influence of high temperature on the performance of aerobic granular sludge in the biological treatment of wastewater. Journal of Environmental Management, 184, 271-280.

Ab Halim, M. H. (2018). Development of aerobic granules in sequencing batch reactor system for treating high-temperature domestic wastewater (PhD thesis). Universiti Teknologi Malaysia, Skudai.

Abdullah, N., Yuzir, A., Curtis, T. P., Yahya, A., Ujang, Z. (2013). Characterization of aerobic granular sludge treating high strength agro-based wastewater at different volumetric loadings. Bioresource Technology, 127, 181-187.

Al-Jiil, S. A. (2009). COD and BOD reduction of domestic wastewater using activated sludge, sand filters and activated carbon in Saudi Arabia. Biotechnology, 8(4), 473-477.

Dahalan, F. A., Abdullah, N., Yuzir, A., Olsson, G., Hamdzah, M., Din, M. F. M., Ahmad, S. A., Khalil, K. A., Anuar, A. N., Noor, Z. Z., Ujang, Z. (2015). A proposed aerobic granules size development scheme for aerobic granulation process. Bioresource Technology, 181, 291-296.

de Kreuk, M. K., Pronk, M., van Loosdrecht, M. C. M. (2005). Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research, 39(18), 4476-4484.

Ghangrekar, M. M., Asolekar, S. R., Joshi, S. G. (2005). Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Research, 39(6), 1123-1133.

Hamza, R. A., Iorhemen, O. T., Zaghloul, M. S., Tay, J. H. (2018). Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment. Journal of Water Process Engineering, 22, 27-33.

Harun, H., Nor-Anuar, A. (2014). Development and utilization of aerobic granules for soy sauce wastewater treatment: optimization by response surface methodology. Jurnal Teknologi, 69(5), 32-33.

Henriet, O., Meunier, C., Henry, P., Mahillon, J. (2016). Improving phosphorus removal in aerobic granular sludge processes through selective microbial management. Bioresource Technology, 211, 298-306.

Liu, Y. Q., Kong, Y., Tay, J. H., Zhu, J. (2011). Enhancement of start-up of pilot-scale granular SBR fed with real wastewater. Separation and Purification Technology, 82, 190-196.

Liu, Y., Tay, J.-H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36(7), 1653-1665.

Long, B., Yang, C. Z., Pu, W. H., Yang, J. K., Jiang, G. S., Dan, J. F., Li, C. Y., Liu, F. B. (2014). Rapid cultivation of aerobic granular sludge in a pilot-scale sequencing batch reactor. Bioresource Technology, 166, 57-63.

Long, B., Yang, C. Z., Pu, W. H., Yang, J. K., Jiang, G. S., Li, C. Y., Liu, F. B., Dan, J. F., Zhang, J., Zhang, L., (2016). Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor. Separation and Purification Technology, 160, 1-10.

Muda, K. (2010). Facultative anaerobic granular sludge for textile dyeing wastewater treatment (PhD thesis). Universiti Teknologi Malaysia, Skudai.

Nancharaiah, Y. V., Reddy, G. K. K. (2018). Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Bioresource Technology, 247, 1128-1143.

Ni, B. J., Xie, W. M., Liu, S. G., Yu, H. Q., Wang, Y. Z., Wang, G., Dai, X. L. (2009). Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Research, 43(3), 751-761.

Othman, I., Anuar, A. N., Ujang, Z., Rosman, N. H., Harun, H., Chelliapan, S. (2013). Livestock wastewater treatment using aerobic granular sludge. Bioresource Technology, 133, 630-634.

Rocktäschel, T., Klarmann, C., Ochoa, J., Boisson, P., Sørensen, K., Horn, H. (2015). Influence of the granulation grade on the concentration of suspended solids in the effluent of a pilot scale sequencing batch reactor operated with aerobic granular sludge. Separation and Purification Technology, 142, 234-241.

Rosman, N. H., Anuar, A. N., Othman, I., Harun, H., Sulong, M. Z., Elias, S. H., Hassan, M. A. H. M., Chelliapan, S., Ujang, Z., (2013). Cultivation of aerobic granular sludge for rubber wastewater treatment. Bioresource Technology, 129, 620-623.

Sarma, S. J., Tay, J. H. (2018). Aerobic granulation for future wastewater treatment technology: Challenges ahead. Environmental Science: Water Research and Technology, 4(1), 9-15.

Seow, T. W., Lim, C. K., Nor, M. H. M., Mubarak, M. F. M., Lam, C. Y., Yahya, A., Ibrahim, Z. (2016). Review on wastewater treatment technologies. International Journal of Applied Environmental Sciences, 11(1), 111-126.

Sheng, G. P., Yu, H. Q., Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894.

Song, Z., Ren, N., Zhang, K., Tong, L. (2009). Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors. Journal of Environmental Sciences, 21(3), 273-278.

Winkler, M. K. H., Meunier, C., Henriet, O., Mahillon, J., Suárez-Ojeda, M. E., Del Moro, G., De Sanctis, M., Di Iaconi, C., Weissbrodt, D. G., (2018). An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chemical Engineering Journal, 336, 489-502.

Xia, J., Ye, L., Ren, H., & Zhang, X. X. (2018). Microbial community structure and function in aerobic granular sludge. Applied Microbiology and Biotechnology, 102(9), 3967-3979.

Yang, G. F., Feng, L. J., Wang, S. F., Yang, Q., Xu, X. Y., Zhu, L. (2015). Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water. Bioresource Technology, 191, 271-280.

Downloads

Published

02-02-2020