Partial Sums For Class Of Analytic Functions Defined By Integral Operator


  • Nagat. M. Mustafa
  • Maslina Darus



Univalent functions, uniformly starlike functions, Hadamard product, partial sums, fractional derivatives and fractional integrals,


In the present paper, we study the class of analytic functions involving generalized integral operator, which is defined by means of a general Hurwitz Lerch Zeta function denoted by ,()sbfzαℑwith negative coefficients. The aim of the paper is to obtain the coefficient estimates and also partial sums of its sequence ,()


N.M.Mustafa and M. Darus, ”Vasile Alecsandri” University of Bac˘au Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics . 21 (2011), No. 2, 45 - 56

F. Rønning, Proc. Amer. Math., Soc,118 (1) (1993), 189-196

F S. Owa and H. M. Srivastava, Canadian Journal of Mathematics,39(5)(1987),1057- 1077.

H. M. Srivastava and S. OwaMath Japonica., 29(3) (1984),383-389.

H. M. Srivastava and A. A. Attiya, Integral Transforms and Special Functions, 18(3)(2007),207- 216

W. Alexander, Annals of Mathematics., 17(1915),12-22.

R.J. Libera, Pro of the Amer Math Soc., 135(1969),429-44

S.D. Bernardi, Trans of Amer Math Soc., 135(1969),429-449..

I.B.Jung, Y.C.Kim, and H.M.Srivastava, Journal of MathAnalysis and Applications, 176(1993),138- 147.

F. Rønning, Annal. Polon. Math., 60 (1995), 289-297.

H. Silverman, J. Math. Anal. Appl., .209(1)(1997), 221-227

H.M. Srivastava and J.Choi, Series Associated with the Zeta and Related Functions, (Dordrecht, Boston and London: Kluwer Academic Publishers), (2001).

G. S. Salagean, Lecture Notes in Math Springer-Verlag. , 1013(1983), 362-372.

T. M.Flett, Math. Anal. Appl.38 (1972), 746-765.

T N. E.Cho, T. H. Kim, Bull. Korean Math. Soc. 40(3) (2003), 399-410

L. J.Lin ,S. Owa, Georgian Math. J. 5(4) (1998), 361-366.