Decolorization of Reactive Black 5 dye using gel combustion synthesized LaFeO3 nanoparticles
DOI:
https://doi.org/10.11113/mjfas.v15n3.1459Keywords:
Lanthanum orthoferrite, Combustion method, Reaction time, Photocatalysis, Dye degradationAbstract
Lanthanum orthoferrite (LaFeO3) nanoparticles was prepared via gel combustion method with fixed reaction temperature at 200°C, but different reaction time of (t) 2 hours (t=2h) and 24 hours (t=24h), respectively. Physicochemical properties' characterization was performed to compare both samples. UV-Vis spectroscopy analysis was done to determine the photocatalytic performance on Reactive Black 5 (RB5) dye. LaFeO3(t=24h) possessed a high crystallinity structure with specific surface area (SSA) of 28.037 m2g-1, while LaFeO3(t=2h) had a mixture of crystalline and amorphous structures with SSA of 40.952 m2g-1. The catalysts’ loading was also varied in a few conditions to elucidate the optimum loading that maximize the dye removal by mean of adsorption-photocatalytic action. Up to 94% of RB5 dye was successfully removed within 6h by LaFeO3(t=2h) samples, and this enhanced synergistic activity of LaFeO3 is promising for the further application of visible light driven photocatalyst in polluted water treatment.References
Ohtani, B. (2014). Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: Its thermodynamics and kinetics. Phys. Chem. Chem. Phys., 16:1788–1797. doi: 10.1039/C3CP53653J
Castillo, N. C., Heel, A., Graule, T., Pulgarin, C. (2010). Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Appl. Catal. B Environ., 95:335–347. doi: 10.1016/j.apcatb.2010.01.012
Thirumalairajan, S., Girija, K., Hebalkar, N. Y., Mangalaraj, D., Viswanathan, C., Ponpandian, N. (2013). Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv., 3:7549–7561. doi: 10.1039/c3ra00006k
Niu, T., Liu, G. L., Chen, Y., Yang, J., Wu, J., Cao, Y., Liu, Y. (2016). Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Appl. Surf. Sci., 364:388–399. doi: 10.1016/j.apsusc.2015.12.164
Mutalib, M. A., Aziz, F., Jamaludin, N. A., Yahya, N., Ismail, A. F., Mohamed, M. A.,…Yusof, N. (2018). Enhancement in photocatalytic degradation of methylene blue by LaFeO3-GO integrated photocatalyst-adsorbents under visible light irradiation. Korean Chem. Eng., 35:548–556. doi: 10.1007/s11814-017-0281-0
Phokha, S., Pinitsoontorn, S., Rujirawat, S., Maensiri, S. (2015). Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Phys. B Phys. Condens. Matter., 476:55–60. doi: 10.1016/j.physb. 2015.07.021
Hao, X., Zhang, Y. (2017). Low temperature gel-combustion synthesis of porous nanostructure LaFeO3 with enhanced visible-light photocatalytic activity in reduction of Cr(VI). Mater. Lett. 197:120–122. doi: 10.1016/ j.matlet.2017.03.133
Parida, K. M., Reddy, K. H., Martha, S., Das, D. P., Biswal, N. (2010). Fabrication of nanocrystalline LaFeO3: An efficient sol e gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrog. Energy, 35:12161–12168. doi: 10.1016/j.ijhydene.2010.08.029
Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L. (2003). Auto-combustion synthesis of nanocrystalline LaFeO3. Mater. Chem. Phys., 78:25–29.
Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H.,…Yanagida, S. (2001). Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem., 11:1694–1703. doi: 10.1039/b008974p
Shikha, P., Kang, T. S., Randhawa, B. S. (2015). Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles. J. Alloys Compd. 625:336–345. doi: 10.1016/j.jallcom.2014.11.074
Zhu, Y., Xu, S., Yi, D. (2010). Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React. Funct. Polym. 70:282–287. doi: 10.1016/j.reactfunctpolym.2010.01.007
Li, Y., Lu, A., Wang, C., Wu, X. (2008). Characterization of natural sphalerite as a novel visible light-driven photocatalyst. Sol. Energy Mater. Sol. Cells. 92:953–959. doi: 10.1016/j.solmat.2008.02.023
Mazierski, P., Nischk, M., Gołkowska, M., Lisowski, W., Gazda, M., Winiarski, M. J.,…Zaleska-Medynska, A. (2016). Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant. Appl. Catal. B Environ. 196:77–88. doi: 10.1016/j.apcatb. 2016.05.006
Shanavas, S., Priyadharsan, A., Vasanthakumar, V., Arunkumar, A., Anbarasan, P. M., Bharathkumar, S. (2017). Mechanistic investigation of visible light driven novel La2CuO4/CeO2/rGO ternary hybrid nanocomposites for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol. A Chem. 340:96–108. doi: 10.1016/j.jphotochem.2017.03.002
Kanhere, P., Chen, Z. (2014). A review on visible light active perovskite-based photocatalysts. Molecules. 19:19995–20022. doi: 10.3390/ molecules191219995
Shet, A., Shetty, K. V. (2016). Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ. Sci. Pollut. Res. Int. 23:20055–20064. doi: 10.1007/s11356-015-5579-z
Altman, I. S., Agranovski, I. E., Choi, M. (2005). Mechanism of nanoparticle agglomeration during the combustion synthesis. Appl. Phys. Lett. 87:5–8. doi: 10.1063/1.2005387