Nanocellulose and nanoclay as reinforcement materials in polymer composites: A review


  • Fathin Najihah Nor Mohd Hussin Universiti Teknologi Malaysia
  • Roswanira Abdul Wahab Universiti Teknologi Malaysia
  • Nursyafreena Attan Universiti Teknologi Malaysia



Nanocellulose, Nanoclay, Polymer-matrix composites (PMCs), Mechanical properties, Thermal properties


The advancement of nanotechnology has opened a new opportunity to develop nanocomposites using nanocellulose (NC) and nanoclay (NCl). Researchers have regarded these nanocomposites as promising substitutes for conventional polymers because of their characteristic and useful features, which include exceptional strength and stiffness, low weight, and low environmental impact. These features of NC and NCl explain their multifarious applications across many sectors. Here we review NC and NCl as well as various reinforced polymer composites that are made up of either of the two nanomaterials. The structural and physicochemical properties of NC and NCl are highlighted, along with the mechanical behavior and thermal properties of NC. Current nanomaterial hybrid biopolymers for the production of novel high-performance polymer nanocomposites are also discussed with respect to their mechanical properties.

Author Biographies

Roswanira Abdul Wahab, Universiti Teknologi Malaysia

Jabatan Kimia Fakulti Sains Universiti Teknologi Malaysia

Nursyafreena Attan, Universiti Teknologi Malaysia

Jabatan Kimia Fakulti Sains Universiti Teknologi Malaysia


Onoja, E., Chandren, S., Razak, F. I. A., Mahat, N. A. Wahab, R. A. Oil palm (Elaeis guineensis) biomass in Malaysia: The present and future prospects. Waste Biomass Valorization 2018, 1-19.

Elias, N., Chandren, S., Attan, N., Mahat, N. A., Razak, F. I. A., Jamalis, J., Wahab, R. A. Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydrate Polymers 2017, 176, 281-292.

Sanchez-Garcia, M. D., Lagaron, J. M. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 2010, 17, 987-1004.

Lee, K. Y., Aitomäki, Y., Berglund, L. A., Oksman, K., Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 2014, 105, 15-27.

Lee, W. F., Fu, Y. T. Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. Journal of Applied Polymer Science 2003, 89, 3652-3660.

Ashori, A., Nourbakhsh, A. Effects of nanoclay as a reinforcement filler on the physical and mechanical properties of wood-based composite. ‎ Journal of Composite Materials 2009, 43, 1869-1875.

Suhas, V., Carrott, P., Singh, R., Chaudhary, M., Kushwaha, S. Cellulose: A review as natural, modified and activated carbon adsorbent: Biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies. Bioresource Technology 2016, 216, 1066-1076.

Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368-393.

Ezeilo, U. R., Zakaria, I. I., Huyop, F., Wahab, R. A. Enzymatic breakdown of lignocellulosic biomass: The role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnology & Biotechnological Equipment 2017, 31, 647-662.

Prabu, L. S. Nanocellulose bio-nanomaterial: A review. Journal of Bioequivalence & Bioavailability 2017, 1.

Lee, H., Hamid, S., Zain, S. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal 2014.

Newman, R. H., Hemmingson, J. A. Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 1995, 2, 95-110.

George, J., Sabapathi, S. N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications 2015, 8, 45-54.

Ureńa-Benavides, E. E., Ao, G., Davis, V. A., Kitchens, C. L. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 2011, 44, 8990–8998.

Trache, D., Hussin, M. H., Haafiz, M. M., Thakur, V. K. Recent progress in cellulose nanocrystals: sources and production. Nanoscale 2017, 9, 1763-1786.

Chowdhury, Z. Z. Hamid, S. B. A. Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioResources 2016, 11, 3397-3415.

Salajková, M., Berglund, L. A., Zhou, Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. Journal of Materials Chemistry 2012, 22, 19798-19805.

Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485-2491.

Hong, B., Chen, F., Xue, G. Preparation and characterization of cellulose nanocrystals from bamboo pulp. Cellulose Chemistry and Technology 2016, 50, 225-231.

Chen, D., Lawton, D., Thompson, M. R., Liu, Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydrate Polymers 2012, 90, 709-716.

Bernard, F. L., Duczinski, R. B., Rojas, M. F., Fialho, M. C. C., Carreño, L. Á., Chaban, V. V. Vecchia, F. D. Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption. Fuel 2018, 211, 76-86.

Mandal, A., Chakrabarty, D. Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasseJournal of Industrial and Engineering Chemistry 2014, 20, 462-473.

Santos, R. M. D., Flauzino Neto, W. P., Silvério, H. A., Martins, D. F., Dantas, N. O., Pasquini, D. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 2013, 50, 707-714.

Sucaldito, M. R., Camacho, D. H. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. Carbohydrate Polymers 2017, 169, 315-323.

Singh, S., Gaikwad, K. K., Park, S. I., Lee, Y. S. Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. International Journal of Biological Macromolecules 2017, 99, 506-510.

Chen, Y. W., Lee, H. V., Juan, J. C., Phang, S. M. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers 2016, 151, 1210-1219.

Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 2015, 22, 935-969.

Yano, H. Production of cellulose nanofibers and their applications. Annals of the High Performance Paper Society, Japan 2010, 49, 15-20.

Menon, M. P., Selvakumar, R., Ramakrishna, S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Advances 2017, 7, 42750-42773.

Xu, X., Liu, F., Jiang, L., Zhu, J., Haagenson, D., Wiesenborn, D. P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces 2013, 5, 2999-3009.

Sofla, M. R. K., Brown, R. J., Tsuzuki, T., Rainey, T. J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology 2016, 7, 035004.

Nakagaito, A. N., Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber-based composites. Applied Physics A 2004, 81, 1109-1112.

Henriksson, M., Henriksson, G., Berglund, L. A., Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 2007, 43, 3434-3441.

Habibi, Y., Lucia, L. A., Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews 2010, 110, 3479-3500.

Zhao, Y., Moser, C,Lindström, M. E., Henriksson, G., Li, J. Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation–structure–film performance interrelation. ACS Applied Materials & Interfaces 2017, 9, 13508-19.

Rangaswamy, B., Vanitha, K., Hungund, B. S. Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science 2015, 2, 1-8.

Czaja, W., Krystynowicz, A., Bielecki, S., Brown, R. M. Microbial cellulose-the natural power to heal wounds. Biomaterials 2006, 27, 145-151.

Maria, L., Santos, A. L., Oliveira, P. C., Valle, A. S., Barud, H. S., Messaddeq, Y., Ribeiro, S. J. L. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 2010, 20, 72-77.

Moniri, M., Boroumand, M. A., Azizi, S., Abdul Rahim, R. Ariff, A., Zuhainis S., Navaderi, M., Mohamad, R. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 2017, 7, 257.

Hungund, B. S., Gupta, S. Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World Journal of Microbiology & Biotechnology 2010, 26, 1823-1828.

Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology 2002, 29, 189-195.

Lin, N., Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal 2014, 59, 302-325.

Jawaid, M., Mohammad, F. Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications. John Wiley & Sons, 2017.

Gillis, P.P. Effect of hydrogen bonds on the axial stiffnes of crystalline native cellulose. Journal of Polymer Science Part B 1969, 7, 783-794.

Dri, F. L., Hector, L. G., Moon, R. J., Zavattieri, P. D. Anisotropy of the elastic properties of crystalline cellulose I β from first principles density functional theory with Van der Waals interactions. Cell 2013, 20, 2703-2718.

Savadhekar, N. R., Mhaske, S. T. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers 2012, 89, 146-151.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011, 40, 3941-3994.

Khan, A., Huq, T. A., Khan, R., Riedl, B., Lacroix, M. Nanocellulose-based composites and bioactive agents for food packaging. Critical Reviews in Food Science and Nutrition 2014, 54, 163-174.

Petersson, L., Kvien, I., Oksman, K. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology 2007, 67, 2535-2544.

Nishino, T., Matsuda, I., Hirao, K. All-cellulose composite. Macromolecules 2004, 37, 7683-7687.

Nakagaito, A. N., Nogi, M., Yano, H. Displays from transparent films of natural nanofibers. MRS Bulletin 2010, 35, 214-218.

Diaz, J. A., Wu, X., Martini, A., Youngblood, J. P., Moon, R. J. Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 2013, 14, 2900-2908.

Septevani, A. A., Annamalai, P. K., Martin, D. J. Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam, AIP Conference Proceedings, Dublin, 2017.

Favier, V., Chanzy, H., Cavaille, J. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 1995, 28, 6365-6367.

Eichhorn, S. J. Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter 2011, 7, 303-315.

Tashiro, K., Kobayashi, M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer 1991, 32, 1516-1526.

Lee, K. Y., Tammelin, T., Kiiskinen, H., Samela, J., Schlufter, K., Bismarck, A. Nanofibrillated cellulose vs. bacterial cellulose: Reinforcing ability of nanocellulose obtained top-down or bottom-up. ECCM15 - 15th European Conference on Composite Materials, Venice, 2013.

Szymańska-Chargot, M., Cybulska, J., Zdunek, A. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 2010, 11, 5543-5560.

Lee, K. Y., Tammelin, T., Schulfter, K., Kiiskinen, H., Samela, J., Bismarck, A. High performance cellulose nanocomposites: Comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Applied Materials & Interfaces 2012, 4, 4078-4086.

Pommet, M., Juntaro, J., Heng, J. Y., Mantalaris, A. Lee, A. F., Wilson, K., Kalinka, G., Shaffer, M. S., Bismarck, A. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 2008, 9, 1643-51.

Gindl, W., Keckes, J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Composites Science and Technology 2004, 64, 2407-2413.

Wan, Y., Luo, H., He, F., Liang, H., Huang, Y., Li, X. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology 2009, 69, 1212-1217.

Dufresne, A., Dupeyre, D., Vignon, M. R. Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. Journal of Applied Polymer Science 2000, 76, 2080-2092.

Mathew, A. P., Oksman, K., Sain, M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science 2005, 97, 2014-2025.

Kaushik, A., Singh, M., Verma, G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers 2010, 82, 337-345.

Nazir, M. S., Kassim, M. H. M., Mohapatra, L., Gilani, M. A., Raza, M. R., Majeed, K. Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. Nanoclay Reinforced Polymer Composites. Springer, Singapore, 2016, pp 35-55.

Majeed, K., Jawaid, M., Hassan, A., Bakar, A. A., Khalil, H. A., Salema, A., Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials and Design 2013, 46, 391-410.

Floody, M. C., Theng, B., Reyes, P., Mora, M. Natural nanoclays: applications and future trends–a Chilean perspective. Clay Minerals 2009, 44, 161-176.

Mintova, S., Jaber, M., Valtchev, V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews 2015, 44, 7207-7233.

Öztürk, H., Pollet, E., Phalip, V., Güvenilir, Y., Avérous, L. Nanoclays for lipase immobilization: Biocatalyst characterization and activity in polyester synthesis. Polymer 2016, 8, 416.

Kerr, P. F. Formation and occurrence of clay minerals. Clay Clay Minerals 1952, 1, 19-32.

Kamble, R., Ghag, M., Gaikawad, S., Panda, B. Halloysite nanotubes and applications: A review. Journal of Advanced Scientific Research 2012, 3, 25-29.

Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., Krawczak, P. Poly (lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science 2013, 128, 1895-1903.

Arora, A., Padua, G. Nanocomposites in food packaging. Journal of Food Science 2010, 75.

Shamini, G., Yusoh, K. Gas permeability properties of thermoplastic polyurethane modified clay nanocomposites. International Journal of Chemical Engineering and Applications 2014, 5, 64.

Irawan, S. Formulation of drilling fluids for high temperature well application using Sabah Bentonite. Jurnal APTEK 2014, 2, 117-124.

Uddin, F. Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions 2008, 39, 2804-2814.

Shabeer, T. A., Saha, A., Gajbhiye, V., Gupta, S., Manjaiah, K., Varghese, E. Exploitation of nano-bentonite, nano-halloysite and organically modified nano-montmorillonite as an adsorbent and coagulation aid for the removal of multi-pesticides from water: a sorption modelling approach. Water, Air, & Soil Pollution 2015, 226, 41.

Rafiee, R., Shahzadi, R. Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polymer Composites 2018.

Nakato, T., Kawamata, J., Takagi, S. Inorganic nanosheets and nanosheet-based materials. Fundamentals and Applications of Two-Dimensional Systems. Springer, Tokyo, 2017.

Anjana, R., George, K. Reinforcing effect of nano kaolin clay on PP/HDPE blends. International Journal of Engineering Research and Applications 2012, 2, 868-872.

Carli, L. N., Crespo, J. S., Mauler, R. S. PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Composites Part A: Applied Science and Manufacturing 2011, 42, 1601-8.

Pavlidou, S., Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Progress in Polymer Science 2008, 33, 1119-1198.

Yang, K. K., Wang, X. L., Wang, Y. Z. Progress in nanocomposite of biodegradable polymer. Journal of Industrial and Engineering Chemistry 2007, 13, 485-500.

Ghebaur, A., Garea, S. A., Iovu, H. New polymer–halloysite hybrid materials—potential controlled drug release system. International Journal of Pharmaceutics 2012, 436, 568-573.

Qiu, K., Netravali, A. N. Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polymer Composites 2013, 35, 799-809.

Fu, J. F., Chen, L. Y., Yang, H., Zhong, Q. D., Shi, L. Y., Deng, W., Dong, X., Chen, Y., Zhao, G-Z. Mechanical properties, chemical and aging resistance of natural rubber filled with nano‐Al2O3. Polymer Composites 2012, 33, 404-411.

Zuo, L., Fan, W., Zhang, Y., Zhang, L., Gao, W., Huang, Y., Liu, T. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Composites Science and Technology 2017, 139, 57-63.

Lu, D., Chen, H., Wu, J., Ming Chan, C. Direct measurements of the Young's modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage. Journal of Nanoscience and Nanotechnology 2011, 11, 7789-7793.

Bhattacharya, M. Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262.

Venkatesan, N., Bhaskar, G., Pazhanivel, K., Poyyathappan, K. Reinforcing effect of montmorillonite nanoclay on mechanical properties of high-density polyethylene nanocomposites. Applied Mechanics and Materials 2014, 591, 60-63.

Cyras, V.P., Manfredi, L. B., Ton-That, M. T., Vázquez, A. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydratw Polymer 2008, 73, 55-63.