Kinetic analysis of Malaysia type biomasses via thermogravimetric analyser (TGA)

Authors

  • Vekes Balasundram Universiti Teknologi Malaysia
  • Khairunnisa Kamarul Zaman Universiti Teknologi Malaysia
  • Norazana Ibrahim Universiti Teknologi Malaysia
  • Rafiziana Kasmani Universiti Teknologi Malaysia
  • Mohd Kamaruddin Abd Hamid Universiti Teknologi Malaysia
  • Hasrinah Hasbullah Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n5.1407

Keywords:

Biomass, thermogravimetric analysis, pyrolysis, kinetic parameters

Abstract

The kinetic behaviour of biomass pyrolysis samples was successfully studied via thermogravimetric analysis. The biomass samples were empty fruit bunch, oil palm trunk, rice husk, coconut copra, sawdust, coconut shell, sugarcane bagasse, and wood bark. The analysis was performed in a nitrogen atmosphere from 30 to 700°C. The effect of heating rate on kinetic behaviour of biomass at two different high heating rates was evaluated at 40°C/min (HR1) and 80°C/min (HR2). The kinetic parameters of biomass samples such as pre-exponential factor (s-1), activation energy (kJ/mol), and reaction order (n) were determined using one-step global kinetic model. The wood bark sample has the lowest activation energy (38.14 kJ/mol), while coconut copra was reported for the highest activation energy (145.42 kJ/mol). High positive activation energy was achieved at a higher heating rate (HR2) than at lower heating rate (HR1) for biomass samples.

Author Biographies

Vekes Balasundram, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

Khairunnisa Kamarul Zaman, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

Norazana Ibrahim, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

Rafiziana Kasmani, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

Mohd Kamaruddin Abd Hamid, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

Hasrinah Hasbullah, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering

References

Awalludin, M. F., Sulaiman, O., Hashim, R., Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 50, 1469-1484.

Veses, A., Aznar, M., Martínez, J. D., López, J. M., Navarro, M. V., Callén, M. S., Murillo, R., Garcia, T. (2014). Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology, 162, 250-258.

Balasundram, V., Ibrahim, N., Kasmani, R.M., Hamid, M. K. A., Isha, R., Hasbullah, H., Ali, R. R. (2017). Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167, 218-228.

Ng, F. Y., Yew, F., Basiron, Y., Sundram, K. A. (2011). Renewable future driven with Malaysian palm oil-based green technology. Journal of Oil Palm, Environment and Health, 2, 1-7.

Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879-5889.

Malaysian Palm Oil Board (MPOB). (2011). National biomass strategy 2020: New wealth creation for Malaysia’s palm oil industry. Malaysia: Malaysian Palm Oil Board (MPOB).

Balasundram, V., Ibrahim, N., Samsudin, M. D. H., Kasmani, R. M., Hamid, M. K. A., Isha, R., Hasbullah, H. (2017). Thermogravimetric studies on the catalytic pyrolysis of rice husk. Chemical Engineering Transactions, 56, 427-432.

Balasundram, V., Ibrahim, N., Kasmani, R. M., Hamid, M. K. A., Isha, R., Hasbullah, H., Ali, R. R. (2017). The effect of catalyst loading (Ni-Ce/Al2O3) on coconut copra pyrolysis via thermogravimetric analyser. Chemical Engineering Transactions, 56, 901-906.

Asadieraghi, M., Daud, W. M. A. W. (2015). In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. Journal of Analytical and Applied Pyrolysis, 115, 379-39.

Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 167-169.

Galadima, A., Muraza, O. (2015). In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Conversion and Management, 105, 338-354.

Anastasakis, K., Kitsiou, I., Jong, W. (2016). Fast devolatilization characteristics of ‘low cost’ biomass fuels, wood and reed. Potential feedstock for gasification. Fuel Processing Technology, 142, 157-166.

Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143-150.

Huang, Y. F., Chiueh, P. T., Kuan, W. H., Lo, S. L. (2013). Pyrolysis kinetics of biomass from product information. Applied Energy, 110, 1-8.

Weerachanchai, P., Tangsathitkulchai, C., Tangsathitkulchai, M. (2010). Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Journal of Science and Technology, 17(4), 387–400.

Mehrabian, R., Scharler, R., Obernberger, I. (2012). Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modeling. Fuel, 93, 567-575.

Parthasarathy, P., Narayanan, K. S., Arockiam, L. (2013). Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and Bioenergy, 58, 58-66.

Ahmed, I., Gupta, A. K. (2009). Syngas yield during pyrolysis and steam gasification of paper. Applied Energy, 86(9), 1813-1821.

Doumer, M. E., Arízaga, G. G. C., da Silva, D. A., Yamamoto, C. I., Novotny, E. H., Santos, J. M., Santos, L. O. dos., Jr, A. W., Andrade, J. B. A., Mangrich, S. (2015). Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. Journal of Analytical and Applied Pyrolysis, 113, 434-443.

White, J. E., Catallo, W. J., Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33.

Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., Hii, K. L. (2016). Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunnose (KAS) method. Procedia Engineering, 148, 1257-1251.

Shaaban, A., Se, S., Dimin, M. F., Juoi, J. M., Husin, M. H. M., Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biocharsderived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 143-150.

Mekhilef, S., Saidur, R., Safari, A., Mustaffa, W. E. S. B. (2011). Biomass energy in Malaysia: Current state and prospects. Renewable and Sustainable Energy Review, 15(7), 3360-3370.

Oyedun, A. O., Tee, C. Z., Hanson, S., Hui, C. W. (2014). Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Processing Technology, 128, 471-481.

Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R., Kasmani, R. M. 2015. Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia, 75, 78-83.

Alias, N. B., Ibrahim, N., Hamid, M. K. A. (2014). Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia, 61, 2532-2536.

Auta, M., Ern, L. M., Hameed, B. H. (2014). Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 67-72.

Idris, S. S., Rahman, N. A., Ismail, K., Alias, A. B., Rashid, Z. A., Aris, M. J. (2010). Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology, 101(12), 4584-4592.

Duvvuri, M. S., Muhlenkamp, S. P., Iqbal, K. Z., Welker, J. R. (1975). The pyrolysis of natural fuels. Journal of Fire and Flammability, 6(4), 468-477.

Goenka, R., Parthasarathy, P., Gupta, N. K., Biyahut, N. K., Narayanan, S. (2015). Kinetic analysis of biomass and comparison of its chemical compositions by thermogravimetric, wet and experimental furnace methods. Waste Biomass Valor, 6(6), 989-1002.

Chew, J., Doshi, V., Yong, S., Bhattacharya, S. (2016). Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. Journal of Thermal Analysis and Calorimetry, 26(2), 709-715.

El-Sayed, S. A., Mostafa, M. E. (2015). Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste and Biomass Valorization, 6(3), 401-415.

Velden, M. V. de., Baeyens, J., Brems, A., Janssens, B., Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232-242.

Downloads

Published

10-10-2019