g-Jitter induced free convection boundary layer on heat transfer from a sphere with constant heat flux

Authors

  • Sharidan Shafie
  • Norsarahaida Amin

DOI:

https://doi.org/10.11113/mjfas.v1n1.14

Keywords:

g-Jitter, Free convection, Heat transfer, Boundary layer, Keller Box method,

Abstract

The free convection from a sphere, which is subjected to a constant surface heat flux in the presence of g-jitter is theoretically investigated in this paper. The governing equations of motion are first non-dimensionalized and the resulting equations obtained after the introduction of vorticity are solved numerically using an implicit finite difference method for a limiting case Re >> 1 or the boundary layer approximations. Table and graphical results for the skin friction and wall temperature distributions as well as for the velocity and temperature profiles are presented and discussed for various parametric physical conditions Prandtl number, Pr=0.72, 1 and 7. Results indicate that g-jitter induced convective flows is stronger when Pr is small.

References

P. M. Gresho, R. L. Sani, J. Fluid Mech, 40 (1970) 783-806.

B. N. Antar, V. S. Nuotio-Antar, Fundamental of Low Gravity Fluid Dynamics and Heat Transfer. Boca Raton: CRC Press. 1993.

N. Amin, Proc. R. Soc. Lond., A 419 (1988) 151-172.

G. Z. Gershuni, M. Y. Zhukorvitskiy, Fluid Mech.- Sov. Res., 15 (1986) 63-84.

M. Wadih, R. J. Roux, J. Fluid Mech., 193 (1988) 391-415.

S. Biringen, L. J. Peltier, Phys Fluids, A 2 (1990) 279-283.

S. Biringen, A. I. A. A. Danabasoglu, Thermophys heat transfer, 4 (1990) 357-365.

J. I. D. Alexander, S. Amirondine, J. Ouzzani, F. J. Rosenberger, J. Cryst Growth, 113 (1990) 21-38.

A. Farooq, G. M. Homsy, J. Fluid Mech., 271 (1994) 351-378.

A. Farooq, G. M. Homsy, J Fluid Mech., 313 (1996) 1-38.

B. G Li, Int. of Heat and Mass Transfer, 39 (1996) 2853-2890.

B. G. Li, Int. J. Eng. Sci., 34 (1996) 1369-1383.

B. P. Pan, B. G. Li, Int. J. Heat Mass Transfer, 17 (1998) 2705-2710.

V. A. Suresh, C. A. Christov, G. M. Homsy, Phys. Fluids 11 (1999) 2585-2576.

K. Hirata, T. Sasaki, H. Tanigawa, J. Fluid Mech., 445 (2001) 327-334.

A. J. Chamkha, Heat Mass Transfer, 39 (2003) 553-560.

D. A. S. Rees, I. Pop, Int. Comm. Heat Mass Transfer , 27 (2000) 415-424.

D. A. S. Rees, I. Pop, Int. of Heat and Mass Transfer, 44 (2001) 877-883.

D. A. S. Rees, I. Pop, Heat and Mass Transfer, 37 (2001) 403-408.

S. Sharidan, N. Amin, I. Pop, International Journal of Heat and Mass Transfer, 2005. (Accepted)

H. B. Keller, A new difference scheme for parabolic problems, in numerical solutions of partial differential equations (B.Hubbard, ed)}. New York: Academic Press. 2: 327-350, 1971.

T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, New York:Springer, 1984.

R. Nazar, N. Amin, I. Pop, International Communications in Heat and Mass Transfer, 29 (2002) 1129 -1138.

J. M. Potter, N. Riley, J. Fluid Mech., 100 (1980) 769-783.

S. N. Brown, C. J. Simpson, J. Fluid Mech., 124 (1982) 123-137.

M. A. Omar Awang,, J. Math. Phy. Sci., 18 (1984) S115 - S125.

Downloads

Published

16-06-2014