Characterization of Si nanowires synthesized using metal-assisted wet-chemical etching


  • Eman S. M. Ashour
  • M.Y. Sulaiman
  • N. Amin
  • Z. Ibrahim



silicon nanowires, silver nitrite catalytic, reflectivity, etching,


A synthesis of vertical silicon nanowire array through metal-assisted chemical etching of highly doped p-type silicon wafers (100) in a solution of hydrofluoric acid and silver nitrate has been proposed. . The influences of the growth parameters such as solution concentration, etching time have been investigated. In addition, we consider other common parameters like wafer resistivity and temperature, which rely on the silicon nanowires formation. The results indicate that the silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer. Furthermore, They provide excellent antireflection property with a low reflection loss of 3% for incident light within the wavelength range of 200–900 nm. Such nanowire arrays may have potential applications as antireflection surface for silicon solar cells


Y. Huang , X. Duan, Y Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science, 294(2001), 1313 -1317.

Y. Huang, X. Duan, C. M. Lieber, Small, 1(2005),142-147.

J. Goldberger , A. I. Hochbaum ,R. Fan and P.Yang , NanoLett. 6 (2006), 973–977.

J. Bae , H. Kim, X. M. Zhang, C. H. Dang ,Y. Zhang, Y. J. Choi, A. Nurmikko ,Z. L.Wang , Nanotechnology, 21(2010) 095502, 1-5.

F. Qian , S. Gradecak ,Y. Li, C. Y. Wen and C. M. Lieber, Nano Lett, 5( 2005), 2287-2291.

S. Huia, J. Zhang , X. Chena, H. Xua, D. Maa, Y. Liua and Bairui Taoa, Sensors and Actuators B: Chemical, 155(2011) , 592-597.

R, J. Y. Jung , Z. Guo, S.W. Jee, H.D.Um, K.-T. Park, J.H. Lee, Nanotechnology (IEEE-NANO),,47 (2010), 1166-1172.

A. I. Boukai, Y. Bunimovich , J.Tahir-Kheli ,J.K. Yu, W.A. Goddard, J.R. Heath, Nature ,451(2008), 168_171.

D. Kumar, S. K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Solar Energy Materials and Solar Cells, 95 (2011),215-218.

M. K. Sunkara, S. Sharma, R. Miranda, Applied Physics Letters , 79 (2001), 1546-1548.

Y. F. Zhang, Y. F. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Appl. Phys. Lett. 72(1998), 1835-1837.

J. Niu, J. Sha, D. Yang, Physica E: Low-dimensional Systems and Nanostructures, 23 (2004), 1-2.

J. Mart , R. Garcia ,Nanotechnology, 21 (2010),245301.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari ,W. I. Milne, J. Vac. Sci. Technol. B, 27(2009), 1520-1526.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J.Zhu, small, 11( 2005),1062-1067.

Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, U. Go¨ sele, NanoLett., 8(2008), 3046-3051.

. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, T. Ye, Applied Physics Letters , 98 (2011), 151116.

D. Kumar, S. K. Srivastava, P.K. Singh, M. Husain, V. Kumar, J Nanopart Res, 12 ( 2010), 2267-2276.

X. Zong, Y. Qu, Y. C. Lin, L. Liao, X. Duan, Applied Material & Interfaces , 3(2011), 361-366.

Y. Liu, J. Zhang, Applied Mechanics and Materials, 138 (2012), 1082-1088.

K. Q. Peng, Y. J. Lan , S. P. Gao, J. Zhu, Advanced Material L,14 ( 2002), 1164-1167.

S. Cruz, A.H. Orville, J. Muller, J Electrochem. Soc., 152(2005), 4118.

Q. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, A. Manseri, Applied Surface Science, 257( 2010), 591-595.