Simulation of Chinese finger grip braided sleeve designs for transtibial prosthetics

Authors

  • Ashoka Varthanan Perumal Sri Krishna College of Engineering and Technology Coimbatore India
  • Darshan Rajasekaran Sri Krishna College of Engineering and Technology
  • Sheril Santacruz Sri Krishna College of Engineering and Technology
  • Venkata Krishnan Ravichandran Sri Krishna College of Engineering and Technology

DOI:

https://doi.org/10.11113/mjfas.v15n5.1335

Keywords:

Transtibial Prosthetics, Amputee, Sleeve, Analysis, Modelling

Abstract

This work focused on the development of a below knee prosthetic that designed to eliminate various discomforts that are commonly prevalent among the general population of the amputees. The major parts of the transtibial prosthesis are foot, pylon, socket and sleeve. The sleeve-socket compatibility plays an important role in determining the comfort level of an amputee. ‘Chinese finger grip braided design’ for the sleeve has been proposed by few researchers for better grip and improved comfort level of the amputees. But the detailed design of the braid is not analyzed so far. In this research, two different Chinese finger grip braided designs of the sleeve were proposed and their suitability for transtibial prosthesis was analyzed. The proposed designs were modelled using SOLIDWORKS software and sufficient evaluation of the same has been carried out using OPENSIM and ANSYS software.

Author Biographies

Ashoka Varthanan Perumal, Sri Krishna College of Engineering and Technology Coimbatore India

Professor of Mechanical Engineering Department

Darshan Rajasekaran, Sri Krishna College of Engineering and Technology

Student

Department of Mechanical Engineering

Sheril Santacruz, Sri Krishna College of Engineering and Technology

Student

Department of Mechanical Engineering

Venkata Krishnan Ravichandran, Sri Krishna College of Engineering and Technology

Student

Department of Mechanical Engineering

References

R. A. R. Gopura, D. S. Bandara, K. Kiguchi, G. K. I. Mann. 2016. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob. Auton. Syst., 75, 203–220.

E. Esfandiari, A. Yavari, A. Karimi, M. Masoumi, M. Souroush, H. Saeedi. 2018. Long term symptoms and function after war related lower limb amputation: A National cross sectional study. Acta. Orthop. Traumato., 52, 348-351.

D. Antmann, S. J. Morgan, J. Kim, B. J. Hafner. 2015. Health-related profiles of people with lower limb loss. Arch. Phys. Med. Rehab., 96, 1474-1483.

M. Lilja, T. Oberg, P. Hoffman. 1998. Morphological changes during transtibial prosthetic fitting. Prosthet. Orthot. Int., 22,115-122.

P. Y Rohan, P. Badel, B. Lun, D. Rasteel, S. Avril. 2014. Prediction of biomechanical effects of compression therapy on deep veins using finite element modelling. Ann. Biomed. Eng., 43, 314-24.

A. Eshraghi, Z. Safaeepour, M. D. Geil, J. Andryse. 2018. Walking and balance in children and adolescents with lower-limb amputation: A review of literature. Clin. Biomech., 59, 181 – 198.

N. Aliman, R. Ramli, S. M. Haris. 2017. Design and development of lower limb exoskeletons: A survey. Rob. Auton. Syst., 95, 102-116.

A. F.-T. Mak, M. Zhang, A. Leung, M. H. Prado Da Silva. 2017. Artificial limbs. Ref. Modul. Mater. Sci. and Mater. Eng., https://doi.org/10.1016/B978-0-12-803581-8.00967-X.

S. J. Morgan, J. L. Friedly, D. Amtmann, R. Salem, B. J. Hafner, 2017, Cross-sectional assessment of factors related to pain intensity and pain interference in lower limb prosthesis users. Arch. Phys. Med. Rehab., 98, 105-113.

T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie, A. R. Burgess. 2001. Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study. Am. J. Phys. Med. Rehab., 80, 563–571.

S. Ali, N. A. Abu Osman, M. M. Naqshbandi, A. Eshraghi, M. Kamyab, H. Gholizadeh. 2012. Qualitative study of prosthetic suspension systems on transtibial amputees' satisfaction and perceived problems with their prosthetic devices, Arch. Phys. Med. Rehab., 93, 1919–1923.

R. Secrest, Artificial Limbs. Retrieved from http://www.madehow.com/Volume-1/Artificial-Limb.html

D. A. Boone, T. Kobayashi, T. G. Chou, A. K. Arabian, K. L. Coleman, M. S. Orendurff, M. Zhang. 2013. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses, Gait. Posture., 37, 620–626.

T. Kobayashi, M. S. Orendurff, A. K. Arabian, T. G. Rosenbaum-Chou, D. A. Boone. 2014. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees. J. Biomech., 47, 1315–1323.

T. Kobayashi, M. S.Orendurff, M. Zhang, D. A. Boone. 2012. Effect of transtibial prosthesis alignment changes on out-of-plane socket reaction moments during walking in amputees. J. Biomech., 45, 2603–2609.

T. Kobayashi, M. S. Orendurff, M. Zhang, D. A. Boone. 2013. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses. J. Biomech., 46, 1343–1350.

N. Butler, M. A. Griebel, R. J. DeRohan, S. Garrett. U. S. Patent 20130103166A1. 2013. to the Quality of Life Plus (QL+) Program.

A. Tözeren. 2000. Human body dynamics: Classical mechanics and human movement, Springer-Verlag: New York, 299.

R. W. Selles, J. B. Bussmann, L. M. Klip, B. Speet, A. J. Van Soest, H. J. Stam. 2004. Adaptations to mass perturbations in transtibial amputees: kinetic or kinematic invariance?, Arch. Phys. Med. Rehabil., 85, 2046–2052.

M. H. Ramlee, A. H. A. Wahab, A. A. Wahab, H. F. M. Latip, S. A. Daud, M. R. A. Kadir. 2017. The effect of stress distribution and displacement of open subtalar dislocation in using titanium alloy and stainless steel mitkovic external fixator - a finite element analysis, Malay. J. Fundam. Appl. Sci., 15, 477-482.

A. H. A.Wahab, M. R. A. Kadir, M. N. Harun, A. Syahrom, M. H. Ramlee. 2017. Different material properties of cancellous bone influence analysis of glenoid component loosening: A finite element study. Malay. J. Fundam. Appl. Sci., 15, 483-488.

Downloads

Published

10-10-2019