Optimization of the water extraction process on total phenolic content from Labisia pumila

Authors

  • Nurul Fazila Faidzul Adzhar Universiti Teknologi Malaysia
  • Zaheda Mohamad Azam Universiti Teknologi Malaysia
  • Nur Fashya Musa Universiti Teknologi Malaysia
  • Norliza Abd Latiff Universiti Teknologi Malaysia
  • Harisun Yaakub Universiti Teknologi Malaysia
  • Muhammad Helmi Nadri Universiti Teknologi Malaysia
  • Nor Zalina Othman Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n5.1326

Keywords:

Total phenolic content, Labicia pumila, water extract, optimization, standardization

Abstract

Labisia pumila is one of the most widely used medicinal herbs among women in Southeast Asia.There is an increasing demand force for this herb in pharmaceutical and food industries. Most of these products are registered without knowing the level of bioactivity in the extracts and not in standardised form. Non-standardized extract is perceived as a low-quality herbal product, hence lowering its market value. Therefore, this study aimed to standardizethe optimal water extraction conditions for maximum total phenolic content (TPC) of L. pumila. In this study, Response Surface Methodology (RSM) was used to optimize the extraction process of TPC from L. pumila. Dried whole plant of L. pumila was extracted in  water as solvent at different temperatures, times, and solid to water ratios that have been identified to be significantly affecting the recovery of TPC. A Box-Behnken design was used to investigate the effects of three independent variables that were coded at three levels consisted of 30 experimental points using decoction method. A second-order polynomial model was used for predicting the response. Regression analysis showed that more than 91.99 % of the variation was explained by the models. Results identified temperature as the most significant (p<0.05) factor affecting the TPC. The optimal conditions obtained from RSM were 60 C for the temperature, 2.67 hours for the extraction time and 1:10 for the solid to water ratio. Under these optimal conditions, the response value of the experimental values  agreed with the predicted value of TPC. In conclusion, the present study has succesfully standardized optimal temperature, time and solid-water ratio of L. pumila water extraction process for high TPC

Author Biography

Nor Zalina Othman, Universiti Teknologi Malaysia

Microbiology Unit
Innovation Centre in Agrictechnology for Advanced Bioprocess (ICA), 
Universiti Teknologi Malaysia Pagoh, 
Jalan EDU Hub UTM 2, 
84600 Muar
Johor, Malaysia.

References

B. C. Stone, Malayan Nature Journal (1988), 42(1), 43-51.

M. W. Ezumi, S. Siti Amrah, A. W. M. Suhaimi, S.S.J. Mohsin, Indian Journal of Pharmacology (2007), 39(1), 30.

N. Abdullah, S. H. Chermahini, C. L. Suan, M. R. Sarmidi, World Applied Sciences Journal (2013), 27(10), 1297-1306.

R. A. M. Sanusi, N.A. Ab Shukor, M.R. Sulaiman, Sains Malaysiana (2013), 42(10), 1511-1516.

N. Jamaludina, R. Hasham, I. Ware, M. R. Sarmidi, R. A. Aziz, Jurnal Teknologi (2015), 77(3), 61-66.

N.M. Effendy, A.N. Shuid, Nutrients (2014), 6(8), 3288-3302.

H. Wu, H. Xi, F. Lai, J. Ma, H. Liu, RSC Advances (2018), 22(8),12116-12126.

H. K. Choi, D. H. Kim, J. W. Kim, S. Ngadiran, M. R. Sarmidi, C. S. Park, Journal Of Bioscience And Bioengineering (2010). 109(3), 291-296.

M. N. Norhayati, A. George, N. H. Hazlina, A. K. Azidah, H.I. Idiana, K. S. Law, I. S. Bahari, W. M.

Zahiruddin, E. Liske, A. Azreena, Journal of Medicinal Food (2014), 17(8), 929-938.

Q. Zhang, M. Ye, Journal of Chromatography A (2009), 1216(11), 1954-1969.

J. A. Jamal, Special Feature: Traditional Medicine: S & T Advancement (2006), nov-dec, 37-49.

H. K. Choi, D. H. Kim, J. W. Kim, S. Ngadiran, M. R. Sarmidi, C. S. Park, Journal of Bioscience and Bioengineering (2010), 109(3), 291-296.

M. Fazliana, H. F. Gu, C. G. Östenson, M. M Yusoff, W. W. Nazaimoon, Journal of Natural Medicines (2012), 66(2), 257-264.

A. H. Lope Pihie, Z. A. Zakaria, F. Othman, Evidence Based Complementary and Alternative Medicine (2012), 1-12.

M. H. Mukrish, F. A. A Majid, N. A. Latiff, L. S. Chua, H. Yaakob, M. R. Sarmidi, Regerative Research (2012), 1, 33-37.

I. I. Muhamad, N. D. Hassan, S. N. H. Mamat, N. M. Nawi, W. A. Rashid, N. A. Tan, Handbook of Food Bioengineering (2017), Chapter 14, 523-560.

N. A. N. Idris, A. Z. Sulaiman, CET Chemical Engineering Transactions (2017), 56, 781-786.

M. M. Ali, M. W., Ripin, A., Ahmad, A. Jurnal Teknologi (2013), 60(1), 51-57.

V. L. Singleton, J. A. Rossi, American Journal of Enology and Viticulture (1965), 16(3), 144-158.

S. Norshazila, C. N. Koy, O. Rashidi, L. H. Ho, I. Azrina, R.A. Nurul Zaizuliana, Z. Zarinah, Sains Malaysiana (2017), 46(2), 231–237.

X. Chen, W. Wang, S. Li, J. Xue, L. Fan, Z. Sheng, Y. Chen, Carbohydrate Polymers (2010), 80(3), 944-948.

L. C. Zhao, Y. He, X. Deng, G. L. Yang, W. Li, J. Liang, Q. L. Tang, Molecules (2012), 17(4), 3618-3629.

Y. Liu, S. Wei, M. Liao, Industrail Crops and Products (2013), 49, 837-843.

N. A. Md Salehan, A. Z. Sulaiman, A. Ajit, ARPN Journal of Engineering and Applied Sciences (2016), 11(4), 2193-2198.

Downloads

Published

10-10-2019