Carbon membrane for gas separation: A short review

Authors

  • Norazlianie Sazali Universiti Teknologi Malaysia
  • Wan Norharyati Wan Salleh
  • Syafiqah Huda Paiman
  • Norhaniza Yusof

DOI:

https://doi.org/10.11113/mjfas.v15n5.1313

Keywords:

Carbon membrane, permeability, selectivity, carbon dioxide.

Abstract

For the past 30 years, membrane technology has been prominently used for various gas purification to obtain a high purity gas. Membrane acts as semipermeable wall, which the separation occurs by controlling the rate of movement of various molecules between two liquid phases or two gas phases or a liquid and a gas phase that passing through the membranes. Then, the advantages offered by membrane process such as simple operation with low energy consumption, low operating and capital cost, continuous process and unnecessary regeneration process compared to absorption and adsorption processes has attracted considerable attentions by researchers. Besides, traditional methods such as pressure swing adsorption, cryogenic distillation and amine absorption which experienced with high energy consumption, expensive and lead to adverse impact on the environment has even made membrane process as preferable method for gas separation. Polymeric materials were used to develop a membrane that can attain high selectivity and permeability with high chemical and thermal resistance.

Author Biography

Norazlianie Sazali, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

References

Abedini, R. & Nezhadmoghadam, A. 2010. Application of membrane in gas separation processes: Its suitability and mechanisms. Petroleum and Coal, 52.

Anjum, M. W., De Clippel, F., Didden, J., Khan, A. L., Couck, S., Baron, G. V., Denayer, J. F. M., Sels, B. F. & Vankelecom, I. F. J. 2015. Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. Journal of Membrane Science, 495, 121-129.

Adewole, J. K., Ahmad, A. L., Ismail, S. & Leo, C. P. 2013. Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17, 46-65.

Bakeri, G., Ismail, A. F., Rana, D. & Matsuura, T. 2012. Development of high performance surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Chemical Engineering Journal, 198–199, 327-337.

Banerjee, S., Maier, G., Dannenberg, C. & Spinger, J. 2004. Gas permeabilities of novel poly (arylene ether) with terphenyl unit in the main chain. Journal of Membrane Science, 229(1-2), 63-71.

Barsema, J. N., Van Der Vegt, N. F. A., Koops, G. H. & Wessling, M. 2002. Carbon molecular sieve membranes prepared from porous fiber precursor. Journal of Membrane Science, 205(1-2), 239-246.

Bhuwania, N., Labreche, Y., Achoundong, C. S. K., Baltazar, J., Burgess, S. K., Karwa, S., Xu, L., Henderson, C. L., Williams, P. J. & Koros, W. J. 2014. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 76, 417-434.

Brunetti, A., Scura, F., Barbieri, G. & Drioli, E. 2010. Membrane technologies for CO2 separation. Journal of Membrane Science, 359(1-2), 115-125.

Centeno, T. A. & Fuertes, A. B. 1999. Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160(2), 201-211.

Centeno, T. A., Vilas, J. L. & Fuertes, A. B. 2004. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science, 228(1), 45-54.

Chua, M. L., Xiao, Y. C. & Chung, T.-S. 2013. Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification. Chemical Engineering Science, 104, 1056-1064.

Carapellucci, R., Giordano, L. & Vaccarelli, M. 2015. Study of a natural gas combined cycle with multi-stage membrane systems for CO2 post-combustion capture. Energy Procedia, 81, 412-421.

Dalane, K., Dai, Z., Mogseth, G., Hillestad, M. & Deng, L. 2017. Potential applications of membrane separation for subsea natural gas processing: A Review. Journal of Natural Gas Science and

Engineering, 39, 101-117.

Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S. & Irabien, A. 2016. Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111.

Fu, Y.-J., Liao, K.-S., Hu, C.-C., Lee, K.-R. & Lai, J.-Y. 2011. Development and characterization of micropores in carbon molecular sieve membrane for gas separation. Microporous and Mesoporous Materials, 143(1), 78-86.

Fuertes, A. B. 2000. Adsorption-selective carbon membrane for gas separation. Journal of Membrane Science, 177(1-2), 9-16.

George, G., Bhoria, N., Alhallaq, S., Abdala, A. & Mittal, V. 2016. Polymer membranes for acid gas

removal from natural gas. Separation and Purification Technology, 158, 333-356.

He, X. & Hägg, M.-B. 2012. Structural, kinetic and performance characterization of hollow fiber carbon membranes. Journal of Membrane Science, 390-391, 23-31.

Hosseini, S. S. & Chung, T. S. 2009. Carbon membranes from blends of PBI and polyimides for N2/CH4 And CO2/CH4 separation and hydrogen purification. Journal of Membrane Science, 328(1-2), 174-185.

Hunt, A. J., Sin, E. H. K., Marriott, R. & Clark, J. H. 2010. Generation, capture, and utilization of industrial carbon dioxide. Chemsuschem, 3(3), 306-322.

Ismail, A. F. & David, L. I. B. 2001. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 193, 1-18.

Ismail, A. F. & Li, K. 2008. From polymeric precursors to hollow fiber carbon and ceramic membranes. In: Reyes, M. & Miguel, M. (Eds.) Membrane Science and Technology. Elsevier.

Jones, C. W. & Koros, W. J. 1994. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.

Kargari, A., Shamsabadi, A. A. & Babaheidari, M. B. 2014. Influence of coating conditions on the H2 separation performance from H2/CH4 gas mixtures by the Pdms/Pei composite membrane. International Journal of Hydrogen Energy, 39(12), 6588-6597.

Khalilpour, R., Mumford, K., Zhai, H., Abbas, A., Stevens, G. & Rubin, E. S. 2015. Membrane-based carbon capture from flue gas: A review. Journal of Cleaner Production, 103, 286-300.

Kiyono, M., Williams, P. J. & Koros, W. J. 2010. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science, 359(1-2), 2-10.

Koresh, J. E. & Soffer, A. 1986. Mechanism of permeation through molecular-sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(7), 2057-2063.

Lee, T., Choi, J. & Tsapatsis, M. 2013. On the performance of C-oriented Mfi zeolite membranes treated by rapid thermal processing. Journal of Membrane Science, 436, 79-89.

Lin, H. & Yavari, M. 2015. Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. Journal of Membrane Science, 475, 101-109.

Luis, P., VBn Gerven, T. & Van Der Bruggen, B. 2012. Recent Developments in Membrane-Based Technologies for CO2 Capture. Progress in Energy and Combustion Science, 38(3), 419-448.

Luo, J., Hang, X., Zhai, W., Qi, B., Song, W., Chen, X. & Wan, Y. 2016. Refining sugarcane juice by an integrated membrane process: Filtration behavior of polymeric membrane at high temperature. Journal of Membrane Science, 509, 105-115.

Mannan, H. A., Mukhtar, H., Murugesan, T., Nasir, R., Mohshim, D. F. & Mushtaq, A. 2013. Recent applications of polymer blends in gas separation membranes. Chemical Engineering & Technology, 36(11), 1838-1846.

Merritt, A., Rajagopalan, R. & Foley, H. C. 2007. High performance nanoporous carbon membranes for air separation. Carbon, 45(6), 1267-1278.

Noro, S.-I., Ochi, R., Inubushi, Y., Kubo, K. & Nakamura, T. 2015. CH4/CO2 and CH4/C2H6 gas separation using a flexible one-dimensional copper (II) porous coordination polymer. Microporous and Mesoporous Materials, 216, 92-96.

Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz Da Costa, J. C. & May, E. F. 2012. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95, 123-154.

Rungta, M., Xu, L. & Koros, W. J. 2015. Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon, 85, 429-442.

Saufi, S. M. & Ismail, A. F. 2004. Fabrication of carbon membranes for gas separation––A review. Carbon, 42(2), 241-259.

Salleh, W. N. W. & Ismail, A. F. 2012. Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AICHE Journal, 58(10), 3167-3175.

Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC. 2018. P84 Co-Polyimide Based-Tubular Carbon Membrane: Effect of Heating Rates on Helium Separations. Solid State Phenomena. 280:308-11.

Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA, et al. 2018. Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. Journal of Natural Gas Science and Engineering. 49:376-84.

Sazali N, Salleh WNW, Ismail AF, Ismail NH, Yusof N, Aziz F, et al. 2018. Influence of intermediate layers in tubular carbon membrane for gas separation performance. International Journal of Hydrogen Energy.

Sazali N, Salleh WNW, Ismail AF. 2017. Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. International Journal of Hydrogen Energy. 42(15):9952-7.

Sazali N, Salleh WNW, Nordin NAHM, Ismail AF. 2015. Matrimid-based carbon tubular membrane: Effect of carbonization environment. Journal of Industrial and Engineering Chemistry. 32:167-71.

Sazali N, Salleh WNW, Ismail AF, Ismail NH, Mohamed MA, Nordin NAHM, et al. 2018. Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-

TDI/MDI polyimide. Chemical Engineering Research and Design.

Scholes, C. A., Stevens, G. W. & Kentish, S. E. 2012. Membrane gas separation applications in natural gas processing. Fuel, 96, 15-28.

Scholes, C. A., Stevens, G. W. & Kentish, S. E. 2012. Membrane gas separation applications in natural gas processing. Fuel, 96, 15-28.

Song, C., Wang, T., Wang, X., Qiu, J. & Cao, Y. 2008. Preparation and gas separation properties of poly (furfuryl alcohol)-based C/Cms composite membranes. Separation and Purification Technology, 58(3), 412-418

Sun, C., Wen, B. & Bai, B. 2015. Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S And Ch4/N2 separation. Chemical Engineering Science, 138, 616-621.

Tang, J., Sirkar, K. K. & Majumdar, S. 2013. Permeation and sorption of organic solvents and separation of their mixtures through an amorphous perfluoropolymer membrane in pervaporation. Journal of Membrane Science, 447, 345-354.

Tanihara, N., Shimazaki, H., Hirayama, Y., Nakanishi, S., Yoshinaga, T. & Kusuki, Y. 1999. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. Journal of Membrane Science, 160(2), 179-186.

Teixeira, M., Campo, M. C., Tanaka, D. A. P., Tanco, M. A. L., Magen, C. & Mendes, A. 2011. Composite phenolic resin-based carbon molecular sieve membranes for gas separation. Carbon, 49(13), 4348-4358.

Tseng, H.-H., Shih, K., Shiu, P.-T. & Wey, M.-Y. 2012. Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science, 405, 250-260.

Wang, T., Sun, F., Wang, H., Yang, S. & Fan, L. 2012. Preparation and properties of pore-filling membranes based on sulfonated copolyimides and porous polyimide matrix. Polymer, 53(15), 3154-3162.

Xiao, Y., Low, B. T., Hosseini, S. S., Chung, T. S. & Paul, D. R. 2009. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Progress in Polymer Science, 34(6), 561-580.

Yusuf, K., Badjah-Hadj-Ahmed, A. Y., Aqel, A. & Alothman, Z. A. 2015. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules. Journal of Chromatography A, 1406, 299-306.

Yong, W. F., Li, F. Y., Xiao, Y. C., Chung, T. S. & Tong, Y. W. 2013. High performance PIM-1/matrimid hollow fiber membranes for CO2/CH4, O2/N2 And CO2/N2 separation. Journal of Membrane Science, 443, 156-169.

Wang, L., Cao, Y., Zhou, M., Zhou, S. J. & Yuan, Q. 2007. Novel copolyimide membranes for gas separation. Journal of Membrane Science, 305(1-2), 338-346.

Zhao, S., Feron, P. H. M., Deng, L., Favre, E., Chabanon, E., Yan, S., Hou, J., Chen, V. & Qi, H. 2016. Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. Journal of Membrane Science, 511, 180-206.

Zhang, X., Hu, H., Zhu, Y. & Zhu, S. 2007. Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly (ethylene glycol). Journal of Membrane Science, 289(1-2), 86-91.

Zhang, X., Hu, H., Zhu, Y. & Zhu, S. 2006. Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Separation and Purification Technology, 52(2), 261-265.

Zhang, Y., Sunarso, J., Liu, S. & Wang, R. 2013. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107.

Downloads

Published

10-10-2019