Biomechanical evaluation of pin placement of external fixator in treating tranverse tibia fracture: Analysis on first and second cortex of cortical bone

Authors

  • Muhammad Hanif Hanif Ramlee Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0003-2705-8379
  • Nur Amalina Zainudin
  • Hadafi Fitri Mohd Latip
  • Gan Hong Seng
  • Evelyn Garcia-Nieto
  • Mohammed Rafiq Abdul Kadir

DOI:

https://doi.org/10.11113/mjfas.v15n2019.1263

Keywords:

Finite Element Analysis, pin placement, external fixator, transverse tibia fracture, stability

Abstract

Biomechanical perspective of external fixator is one of the greatest factor to consider in successfully treating bone fracture. This is due to the fact that mechanical behavior of the structure can be analyzed and optimized in order to avoid mechanical failure, increase bone fracture healing rate and prevent pre-term screw loosening. There are three significant factors that affect the stability of external fixator which are the placement of pin at the bone, configuration and components of external fixator. These factors lead to one question: what is the optimum pin placement in which exerts optimum stability? To date, literature on above mentioned factors is limited. Therefore, we conducted a study to evaluate the uniplanar-unilateral external fixator for two different pin placement techniques in treating transverse tibia fracture via finite element method. The study was started off with the development of transverse tibia fracture using Mimics software. Computed tomography (CT) data image was utilized to develop three dimensional tibia bone followed by crafting fracture on the bone. Meanwhile, the external fixator was developed using SolidWork software. Both tibia bone and external fixator were meshed in 3-matic software with triangular mesh element. Simulation of this configuration was took place in a finite element software, Marc.Mentat software. A load of 400 N was applied to the proximal tibia bone in order to simulate stance phase of a gait cycle.  From the findings, the pin placement at the second cortex of bone provided optimum stability in terms of stress distribution and displacement, which should be considered for better treatment for transverse tibia fracture. On the other hand, the pin placement at first cortex should be avoided to prevent many complications.

Author Biography

Muhammad Hanif Hanif Ramlee, Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

References

Abd Rahman, H. S., Abu Osman, N. A., Wan Abas, W. A. B., Tunku Ahmad, T. S., Ng, E. S. (2008). Validation of finite element analysis for a new external finger fixator to correct flexion deformity - a preliminary result. In N. A. Abu Osman, F. Ibrahim, W. A. B. Wan Abas, H. S. Abdul Rahman, H.-N. Ting (Eds.), 4th Kuala Lumpur International Conference on Biomedical Engineering 2008: BIOMED 2008 25–28 June 2008 Kuala Lumpur, Malaysia (pp. 465-468). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ansah, M., Sella, E. J. (2000). Treatment of complete open medial subtalar dislocation with an external fixateur: A case report. Foot and Ankle Surgery, 6, 179-184.

Benli, S., Aksoy, S., Havitcioglu, H., Kucuk, M. (2008). Evaluation of bone plate with low-stiffness material in terms of stress distribution. Journal of Biomechanics, 41, 3229-3235.

Brianza, S., Brighenti, V., Lansdowne, J. L., Schwieger, K., Boure, L. (2011). Finite element analysis of a novel pin-sleeve system for external fixation of distal limb fractures in horses. The Veterinary Journal, 190, 260-267.

Chandran, P., Puttaswamaiah, R., Dhillon, M. S., Gill, S. S. (2006). Management of complex open fracture injuries of the midfoot with external fixation. The Journal of Foot and Ankle Surgery, 5(45), 308-315.

Chen, D. W., Lin, C. L., Hu, C. C., Wu, J. W., Lee, M. S. (2012). Finite element analysis of different repair methods of Vancouver B1 periprosthetic fractures after total hip arthroplasty. INJURY, 43(7), 1061-1065.

Cheung, J. T.-M., Zhang, M., An, K. N. (2006). Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clinical Biomechanics, 21, 194-203.

Dlimi, F., Mahfoud, M., Berrada, M. S., Bardouni, A. E., Yaacoubi, M. E. (2011). Open medial ankle dislocation without associated fracture : A case report. Foot and Ankle Surgery, 17, e55-e57.

Donaldson, F. E., Pankaj, P., Simpson, A. H. R. W. (2012). Bone properties affect loosening of half-pin external fixators at the pin-bone interface. Injury, 43, 1764-1770.

Elmedin, M., Vahid, A., Nedim, P., Nedžad, R. (2015). Finite Element Analysis and Experimental Testing of Stiffness of the Sarafix External Fixator. Procedia Engineering, 100, 1598-1607.

Ezquerro, F., Jimenez, S., Perez, A., Prado, M., de Diego, G., Simon, A. (2007). The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: A finite element study. Medical Engineering and Physics, 29, 652-660.

Fågelberg, E., Grassi, L., Aspenberg, P., Isaksson, H. (2015). Surgical widening of a stress fracture decreases local strains sufficiently to enable healing in a computational model. International Biomechanics, 2(1), 12-21.

Fernandez, M. A., Nanchahal, J., Costa, M. L. (2017). Open tibial fractures. Orthopaedics and Trauma, 31(2), 125-132.

Fritsch, A., Hellmich, C., Dormieux, L. (2009). Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: Experimentally supported micromechanical explanation of bone strength. Journal of Theoretical Biology, 260, 230-252.

Gorsse, S., Miracle, D. B. (2003). Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcement. Acta Materialia, 51, 2427-2442.

Haraguchi, N., Armiger, R. S., Myerson, M. S., Campbell, J. T., Chao, E. Y. (2009). Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Foot and Ankle International, 30, 177-185.

Harris, J., Huffman, L., Suk, M. (2008). Lateral Peritalar Dislocation: A Case Report. The Journal of Foot and Ankle Surgery, 47(1), 56-59.

Inokuchi, S., Hashimoto, T., Usami, N., Ogawa, K. (1996). Subtalar dislocation of the foot. Foot, 6, 168-174.

Izaham, R. M. A. R., Kadir, M. R. A., Rashid, A. H. A., Hossain, M. G., Kamarul, T. (2012). Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. INJURY, 43, 898-902.

Kim, H.-J., Kim, S.-H., Chang, S.-H. (2011). Bio-mechanical analysis of a fractures tibia with composite bone plates according to the diaphyseal oblique fracture angle. Composites Part B: Engineering, 42, 666-674.

Meleppuram, J. J., Ibrahim, S. (2016). Experience in fixation of infected non-union tibia by Ilizarov technique - a retrospective study of 42 cases. Revista Brasileira de Ortopedia (English Edition), 52(6), 670–675.

Meng, Y.-C., Zhou, X.-H. (2016). External fixation versus open reduction and internal fixation for tibial pilon fractures: A meta-analysis based on observational studies. Chinese Journal of Traumatology, 19(5), 278-282.

Nambi, G. I., Salunke, A. A., Thirumalaisamy, S. G., Babu, V. L., Baskaran, K., Janarthanan, T. (2017). Single stage management of Gustilo type III A/B tibia fractures: Fixed with nail & covered with fasciocutaneous flap. Chin J Traumatol, 20(2), 99-102.

Oken, O. F., Yildirim, A. O., Asilturk, M. (2017). Finite element analysis of the stability of AO/OTA 43-C1 type distal tibial fractures treated with distal tibia medial anatomic plate versus anterolateral anatomic plate. Acta Orthopaedica et Traumatologica Turcica, 51(5):404-408

Peng, L., Bai, J., Zeng, X., Zhou, Y. (2006). Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering & Physics, 28, 227-233.

Pinner, S. J., Sangeorzan, B. J. (2001). Fractures of the tarsal bones. Orthopaedic Clinical of North America, 32, 21-33.

Pitkin, M., Shukeylo, Y., Gritsanov, A. (2007). Mathematical modeling of fixation of a bone fragment in a new Double-needle external fixator compared to hoffmann II fixator. Ser Biomech, 23(1), 96-103.

Prashanth, D. P. S., Singh, P. S. N., Singh, P. A. M., Mukherjee, D. S., Pertin, D. T., Pakhrin, D. V. (2016). A comparative study of uniplanar unilateral external fixationversus locking plate as external fixation in the definitive management of open fractures of tibial diaphysis in adults. IOSR Journal of Dental and Medical Sciences, 15(08), 50-52.

Raja Izaham, R. M., Abdul Kadir, M. R., Abdul Rashid, A. H., Hossain, M. G., Kamarul, T. (2012). Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury, 43(6), 898-902.

Ramlee, M. H., Kadir, M. R., Murali, M. R., Kamarul, T. (2014a). Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation - a finite element analysis. Medical Engineering & Physics, 36(10), 1358-1366.

Ramlee, M. H., Kadir, M. R., Murali, M. R., Kamarul, T. (2014b). Finite element analysis of three commonly used external fixation devices for treating Type III pilon fractures. Medical Engineering & Physics, 36(10), 1322-1330.

Ramlee, M. H., Kadir, M. R. A., Harun, H. (2014). Three-dimensional modelling and finite element analysis of an ankle external fixator. Advanced Materials Research, 845, 183-188.

Ramlee, M. H., Kadir, M. R. A., Murali, M. R., Kamarul, T. (2014). Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation- A finite element analysis. Medical Engineering & Physics, In press.

Ramlee, M. H., Rafiq Abdul Kadir, M., Harun, H. (2015). Three-dimensional modeling and analysis of a human ankle joint. 2013 IEEE Student Conference on Research and Development. 16-17 Dec. Putrajaya: IEEE.

Ramlee, M. H., Sulong, M. A., Garcia-Nieto, E., Penaranda, D. A., Felip, A. R., Abdul Kadir, M. R. (2018). Biomechanical features of six design of the delta external fixator for treating Pilon fracture: A finite element study. Medical & Biological Engineering & Computing, 56(10), 1925-1938.

Roseiro, L. M., Neto, M. A., Amaro, A., Leal, R. P., Samarra, M. C. (2014). External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Computer Methods and Programs in Biomedicine, 113(1), 360-370.

Seibert, F. J., Fankhauser, F., Elliot, B., Stockenhuber, N., Peicha, G. (2003). External fixation in trauma of the foot and ankle. Clinical Podiatric Medicine and Surgery, 20(139-130).

Simkin, A. (1982). Structural analysis of the human foot in standing posture. (Ph.D.), Tel Aviv University, Tel Aviv.

Sternick, M. B., Dallacosta, D., Bento, D. Á., do Reis, M. L. (2012). Relationship between Rigidity of External Fixator and Number of Pins: Computer Analysis Using Finite Elements. Revista Brasileira de Ortopedia (English Edition), 47(5), 646-650.

van Niekerk, A. H., Birkholtz, F. F., de Lange, P., Tetsworth, K., Hohmann, E. (2017). Circular external fixation and cemented PMMA spacers for the treatment of complex tibial fractures and infected nonunions with segmental bone loss. Journal of Orthopaedic Surgery (Hong Kong), 25(2), 2309499017716242.

Vasquez, A. A., Pedersen, H. L., Lidgren, L., Taylor, M. (2003). Finite element analysis of the initial stability of ankle arthodesis with internal fixation: flat cut versus intact joint contours. Clinical Biomechanics, 18, 244-253.

Downloads

Published

04-02-2019