The Precise Value of Commutativity Degree in Some Finite Groups

Authors

  • Kayvan Moradipour
  • Nor Haniza Sarmin
  • Ahmad Erfanian

DOI:

https://doi.org/10.11113/mjfas.v8n2.125

Keywords:

Commutativity degree, Nilpotency class, Conjugacy class, Metacyclic group,

Abstract

The commutativity degree of a finite group

References

P. Erdos and P. Turan, On Some Problems of Statistical Group Theory, Acta Math. Acad. Sci. Hung., 19 (1968), 413-435.

W. H. Gustafson, What is the Probability That Two Groups Elements Commute? Amer. Math. Monthly, 80 (1973), 1031-1304.

A. Erfanian and F. Russo, Isoclinism in Probability of Commuting

R. Kanti Nath and A. Kumar, On a Lower Bound of Commutativity Degree, Rend. Circ. Mat. Palermo, 59 (2010) 137–142.

B. Huppert, Character Theory of Finite Groups. De Gruyter Press, Berlin, 1998.

A. Jaikin-Zapirain, On the Number of Conjugacy Classes in Finite

G. Sherman, A Lower Bound for the Number of Conjugacy Classes in a Finite Nilpotent Group, Pacific J. Math., 80 (1979), 253-254.

R. Brandl and L.Verardi, Metacyclic

L. Hethelyi, Characters, Conjugacy Classes and Centrally Large Subgroups of

H. Sim, Conjugacy Classes of Subgroups of Split Metacyclic Groups of Prime Power Order, Bull. Korean Math. Soc., 35 (1998), 719-726.

K. Moradipour, N. H. Sarmin and A. Erfanian, Conjugacy Classes and Commutativity Degree of Metacyclic

M. Bacon, L.-C. Kappe, The Nonabelian Tensor Square of a 2-Generator

L.-C. Kappe, N. Sarmin and M. Visscher, Two-Generator 2-Groups of Class 2 and Their Nonabelian Tensor Squares, Glasg. Math. J., 41 (1999), 417-430.

J. R. Beuerle, An Elementary Classification of Finite Metacyclic

B. W. King, Presentations of Metacyclic Groups, Bull. Aust. Math. Soc., 8 (1973), 103-131.

Downloads

Published

08-07-2014