The influence of layer thickness on the electrical property of metal-CNT (metal: Cu) composite
DOI:
https://doi.org/10.11113/mjfas.v14n4.1240Keywords:
Metal-CNT, Composite, Electrical Property, Raman Spectroscopy, ThicknessAbstract
The composite of Metal – MWCNT (Metal: Cu) were made by using solid-state reaction method for 1 hour at R.T. after mixing the Multiwalled - CNT (MWCNT) and Copper (Cu) powder with 3% weight of Cu. The result of electrical property measured using LCR meter indicated that the conductivities value of MWCNT/Cu was increased in proportion to the increase of layer thickness of composite and the increasing of frequency measurement. On the other hand, the capacitance value of the MWCNT/Cu composite sample was decreased by the increasing of frequency measurement. From the analysis of cole-cole plot, the MWCNT/Cu composite indicated the peak maximum at certainl frequency, which shows the possibility of achievable polarizability. We have measured the Raman spectra of MWCNT/Cu composites to evaluate the state of dispersion and the Cu-filler interactions reflected, by shifts changes of the peaks. All the Raman bands of the carbon nanotubes are seen at wave number around of 1326 cm-1 (D band), and a wave number around of 1617 cm-1 (second harmonic G band).
References
E. F. Antunes, A. O. Lobo, E. J. Corat, V. J. Trava Airoldi. 2007. Influence of diameter in the raman spectra of aligned MMCNT. Carbon, 45, 913-921.
J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, V. Meunier. 2011. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49, 2581-2602.
K. J. Yulkifli, Parwanta, Ramli, M. Djamal. 2009. Measurement of thin film magnetoresistance and its relation to thickness of ferromagnetic/non-magnetic thin films. J. Sains. Mater. Ind. Special Edition of December, 161-166.
L. Bokobza, J. Zhang. 2012. Raman spectroscopy characterization of multiwall carbon nanotubes composite. eXPRESS Polymer Lett. 6, 601-608.
P. Liu, D. Xu, Z. Li, B. Zhao, E. Siu-Wai Kong, Y. Zhang. 2008. Fabrication of CNTs/Cu composite thin film for interconnect application. Microelectronic Engineering, 85(10), 1984-1987.
P. Padma Kumar and S. Yashonath. 2006. Ionic conduction in the solid state. Journal of Chemical Sciences, 118(1), 135-154.
P. R. Bandaru. 2007. Electrical properties and application of carbon nanotubes structure. Journal of Nanoscience and Nanotechnology, 7(1), 1-29.
Q. W. Li, Y. Li, X. F. Zhang, S. B. Chikkannanavar, Y. H. Zhao, A. M. Dangelewicz, L. X. Zheng, S. K. Doorn, Q. X. Jia, D. E. Peterson, P. N. Arendt Y. T. Zhu. 2007. Structure dependent electrical properties of carbon nanotube fibers. Advanced Materials, 19(20), 3358-3363.
S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk. 2008. Characterization of carbon nanotubes by raman spectroscopy. Materials Science Poland, 26(2), 433-441.
S. K. Singhal, M. Lal, Lata, S. R. Kabi, R. B. Mathur. 2012. Synthesis of Cu/CNTs nanocomposites for antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3, 045011 (10 pp).
T. Blanton, S. Misture, N. Dontula, S. Zdieszynski. 2011. In situ high temperature x-ray diffraction characterization on silver sulfide. Powder Diffraction, 26(02), 114-118.
V. N. Bondarev, P. V. Pikhitsa. 1999. Fluctuation theory of low and high frequency jonscher-type response of disordered ionic conductor. Solid State Ionics, 119, 337-343.
V. Shanov, Y. Heung Yun, M. J. Schulz. 2006. Synthesis and characterization of carbon nanotube materials. Journal of the University of Chemical Technology and Metallurgy, 41, 377-390.