A review of polyurethane as a ground improvement method


  • Diana Che Lat Universiti Teknologi MARA Johor, Pasir Gudang Campus
  • Nazri Ali
  • Ismacahyadi Bagus Mohamed Jais
  • Nor Zurairahetty Mohd Yunus
  • Roslizayati Razali
  • Adrina Rosseira Abu Talip




Polyurethane, lightweight, buoyancy, ground improvement


Ground improvement based on lightweight materials is commonly applied as a method to overcome the problem related to excessive and differential settlement. The application of polyurethane (PU) as a ground improvement work currently increases in demand due to its well performance in many ground improvement projects. The properties and strength of different types of PU available in the market, together with the safety issues and precautions are highlighted in this paper. Due to its lightweight properties, buoyancy behavior of the lightweight foam often causes uplift which jeopardize the stability of the existing structure. Since it is applied in the ground, awareness on PU degradation needs to be emphasized. The suitability and applications of PU as one of alternative method for ground improvement works are also highlighted in this paper.


Ariyarathne, P., Liyanapathirana, D. S., Leo, C. J. 2013. Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment. Int. J. Geomech. 13: 754-768.

Badri, K. 2012. Biobased polyurethane from palm kernel oil-based polyol [internet]. InTechOpen. Available from https://www.intechopen.com/

Bayer, O. 1947. Polyurethanes. Mod. Plast. 24: 149–152.

Boubendir, A. 1993. Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Diss. Abstr. Int. 53: 4632.

Bruder, M. 2013. Beware of buried tank buoyancy. In Environmental Science & Engineering Magazine. Aurora, Canada: Environmental Science and Engineering Publication, pp. 56-58.

Buksowicz, M., Culpan, S. 2014. Use of EPS as a lightweight fill material on the port mann highway improvement project. 2014 Conference of the Transportation Association of Canada Montreal, Quebec.

Buzzi, O., Fityus, S., Sasaki, Y., Sloan, S. 2008. Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mech. Mater. 40: 1012-1021.

Buzzi, O., Fityus, S., Sasaki, Y., Sloan, S. 2010. Use of expanding polyurethane resin to remediate expansive soil foundation. Can. Geotech. J. 47: 623-634.

Campion, R. P., Thomson, B., Harris, J. A. 2005. Elastomers for fluid containment in offshore oil and gas production: Guidelines and review, HSE Research Report 2005: 320.

Chin, S. J. 2004. Investigation of nanotechnology enhanced polyurethane replacement resin (PRR) as a transparent armour material. MSc Thesis, Cranfield University, Shrivenham Campus.

Cosgrove, L., McGeechan, P. L., Robson, G. D., Handley, P. S. 2007. Fungal communities associated with degradation of polyester polyurethane in soil. Appl. Environ. Microbiol. 73: 5817–5824

Crabbe, J. R., Campbell, J. R., Thompson, L., Walz, S. L., Schultz, W. W. 1994. Biodegradation of a collodial ester-based polyurethane by soil fungi. Int. Biodeter. Biodegrad. 33:103–113.

Daigavane, P. B., Jain, K. 2015. Improved foundation system on marine clay using geofoam. Inter. J. Mod. Trends Engin. Res. (IJMTER) 2: 151-156.

Delebecq, E., Pascault, J. P., Boutevin, B., Ganachaud, F. 2013. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113(1): 80-118.

Dernehl, C. U. 1996. Health hazards associated with polyurethane foams. J. Occupat. Medic. 8: 59–62.

Dung, D. L., Vasanth, C. S., Oliver, M. S., Nikhil, G. 2014. High strain rate compressive behavior of polyurethane resin and polyurethane/Al2O3 hollow sphere syntactic foams. J. Compos. Vol. 2014.

Fakhar, A. M. M., Asmaniza, A. 2016. Road maintenance experience using polyurethane (PU) foam injection system and geocrete soil stabilization as ground rehabilitation. IOP Confer. Ser. Mater. Sc. Eng. 136: 12004.

Fattah, M. Y., Al-Saidi, A. A., Jaber, M. M. 2015. Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomech. Eng. 8: 113–132.

Frankowska, K. K. 2007. Influence of geosynthetic reinforcement on the load-settlement characteristics of two-layer subgrade. Geotext. Geomembr. 25: 366-376.

Fried, J. R. 1995. Polymer science and technology. Englewood Cliffs: Prentice Hall PTR.

Frydelund, T. E., Aaboer, R. 2002a. Lighweight filling materials for road construction. EPS Geofoam 3rd International Conference, Salt Lake City.

Frydelund, T. E., Aaboer, R. 2002b. Use of waste materials as for lightweight fills. International Workshop on Lightweight Geomaterials, Tokyo.

Ghani, A. N. A., Radzi, S. M., Ismail, M. S. N., Hamid, A. H. A. A. 2017. Study on the use of polyurethane for road flood damage control. Int. J. GEOMATE. 12: 82-87.

Han, J., Gabr, M. A. 2002. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J. Geotech. Geoenviron. Eng. 128: 44-53.

Hasan, M., Marto, A., Hyodo, M., Makhtar, A. M. 2011. The strength of soft clay reinforced with singular and group bottom ash columns. Electron. J. Geotech. Eng. 16 N: 1215–1227.

Hazarika, H. 2006. Stress-strain modeling of EPS geofoam for large-strain applications. Geotext. Geomembr. 24: 79-90.

Hazell, P. J., Stennett C and Cooper G. 2008. The shock and release behavior of an aerospacegrade cured aromatic amine epoxy resin. Polym. Comp. 29(10): 1106-1110.

Heath, T. L. 1897. The works of Archimedes, Edited in Modern Notation with Introductory Chapters. Cambridge, UK: Cambridge University Press.

Hepburn, C. 1992. Polyurethane elastomers. Dordrecht: Springer Netherlands.

Howard, G. T. 2012. Polyurethane Biodegradation. In Environmental Science and Engineering. Berlin: Springer-Verlag Berlin Heidelberg.

Hufenus, R., Rueegger, R., Banjac, R. 2006. Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotext. Geomembr. 24: 21-37.

Huang, S. J., Macri, C., Roby, M., Benedict, C., Cameron, J. A. 1981. Biodegradation of polyurethanes derived from polycaprolactonediols. In: Edwards K. N. (ed.) Urethane chemistry and applications. Washington, DC: American Chemical Society, pp. 471–487.

Huang, S. J., and Roby, M. S. 1986. Biodegradable polymers poly(amide-urethanes). J. Bioact. Compat. Polym. 1:61–71.

Huntsman, A. Guide to Thermoplastic Polyurethanes (TPU)[Internet]. [Cited on 1/1/2017]. Available on http://www.huntsman.com

Jacob, A. 2006. The popularity of carbon fibre. Reinforc. Plast. 50(3): 22-24.

Jais, I. B. M. 2017. Rapid remediation using polyurethane foam/resin grout in Malaysia. Geotech. Res. 4: 107-117.

Jais, I. B. M., Ali, M. A. M., and Muhamad, H. 2016. Alternative ground improvement solution with polyurethane foam/resin. In: Yusoff, M., Hamid,

N., Arshad, M., Arshad, A., Ridzuan, A., and Awang, H. (eds). InCIEC 2015. Singapore: Springer

Jais, I. B. M., Lat, D. C., and Endut, T. N. D. T. 2019. Compressiblity of peat soil improved with polyurethane. Malaysian J. Civ. Engin. 31: 35-41.

John, S. H. 1999. Lessons learned from failures involving geofoam in roads and embankments (Manhattan College Research Report No. CE/GE-99-1). GeoTech Systems Corp: Bronx, New York, U.S.A.

Kaplan, A. M., and Darby, R. T. 1968. Fungal susceptibility of polyurethanes. Appl. Microbiol. 16: 900–905.

Kaplan, A. M., Darby, R. T., Greenberger, M., and Rodgers, M. R. 1968. Microbial deterioration of polyurethane systems. Dev. Ind. Microbiol. 82: 362–71.

Kay, M. J., Morton, L. H. G., and Prince, E. L. 1991. Bacterial degradation of polyester polyurethane. Int. Biodeter. Bull. 27: 205–22.

Kay, M. J., McCabe, R. W., and Morton, L. H. G. 1993. Chemical and physical changes occurring in polester polyurethane during biodegradation. Int. Biodeter. Biodegrad. 31: 209–225.

Labrow, R. S., Erfle, D. J., and Santerre, J. P. 1996. Elastase-induced hydrolysis of synthetic solid substrates: Poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomat. 17: 2381–2388.

Lat, D. C., Jais, I. B. M., Mohamed, K. T., and Razali, R. 2015. Performance comparison between polyurethane injection pile and slab system against lightweight concrete as a ground improvement using finite element analysis. J. Appl. Sc. Res. 11: 11-16.

Lat, D. C., Jais, I. B. M., Mohammed, K., Baharom, B., Samat, N., and Zainuddin, A. N. 2016. Evaluation of strength characteristics for palm kernel oil-based Polyurethane (PKO-P) as a ground improvement method. Mal. J. Fund. Appl. Sci. 12: 126-129.

Marto, A., and Tan, C. S. 2016. Properties of coal bottom ash from power plants in Malaysia and its suitability as geotechnical engineering material. Jurnal Teknologi 78: 1–10.

Murata, S., Nakajima, T., Tsuzaki, N., Yasuda, M., and Kato, T. 1998. Synthesis and hydrolysis of polyurethane derived from 2,4-diethyl-1,5-pentanediol, Polym. Degrad. Stab. 61: 527-534.

Nowamooz, H. 2016. Resin injection in clays with high plasticity. Comptes rendus – Mecanique 344: 797-806.

Palmeira, E. M., and Antunes, L. G. S. 2010. Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotext. Geomembr. 28: 547-558.

Peter, D., and Guy, E. 2007. Accelerated ageing of polyurethanes for marine applications. Polym. Degrad. Stab. 92: 1455-1464.

Riad, H. L., Ricci, A. L., Osborn, P. W., D'Angelo, D. A., and Horvath, J. S. 2004. Design of lightweight fills for road embankments on Boston's central artery/tunnel project. In International Conference on Case Histories in Geotechnical Engineering, New York; 13-17 April 2004.

Rutkowska, M., Krasowska, K., Heimowska, A., Steinka, I., and Janik, H. 2002. Degradation of polyurethanes in sea water. Polym. Degrad. Stab. 76: 233-239.

Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, M. E., and Jeelani, S. 2005. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Mater. Sci. Eng. A 406: 328–336.

Saunders, J. H., and Frisch, K. C. 1964. Polyurethanes: Chemistry and technology (Part II: Technology). New York: Interscience Publishers.

Singh, D., Chen, N., Martin, C. L., Routbort, J. L., Pagilla, Demirtas, M. U., Reddy, K., Gangathulasi, J., Del Cul, G. D., Simmons, C. M., and

Icenhour, A. S. 2006. Study on degradation of a commercial rigid polyurethane foam used for filling of process gas equipment (PGE) and pipes and corrosion behavior of pipes at K-25/K-27. Oak Ridge: Argonne National laboratory, Nuclear Engineering Division, U. S. Department of Energy.

Soemitro, R., Leong, E. C., and Rahardjo, H. 2000. Soil improvement by surcharge and vacuum preloadings. Géotechnique 50: 601–605.

Soga, K., Au, S. K. A., Jafari, M. R., and Bolton, M. D. 2004. Laboratory investigation of multiple grout injections into clay. Geotechnique 54: 81-90.

Stephen, S. 2016. Pressure reduction on wide culverts with EPS geofoam backfill. Master Dissertations, Syracuse University, Syracuse, New York.

Strachota, A., Whelan, P., Křiž, J., Brus, J., Urbanová, M., Šlouf, M., and Matějka, L. 2007. Formation of nanostructured epoxy networks containing polyhedral oligometric silsesquioxane (POSS) blocks. Polymer 48: 3041-3058.

Stuedlein, A. W., and Negussey, D. 2013. Use of EPS geofoam for support of a bridge. In: Stuedlein, A. W., Christopher, B. R. (eds.). Sound geotechnical research to practice: Honoring Robert D. Holtz. Geotech. Spec. Pub. 230: 344-345.

Timothy, D. S., Steven, F. B., and David, A. 2012. Expanded polystyrene (EPS) geofoam applications & technical data [Internet]. Retrieved from https://my.civil.utah.edu/~bartlett/Geofoam/EPS%20Geofoam%20Applications%20&%20Technical%20Data.pdf

Tsuchida, T., and Tang, Y. X. 2007. Mechanical properties of lightweight treated soil cured in water pressure. Soils Found. 47: 731-48.

United States Environmental Protection Agency. June 2014. Flame retardants used in flexible polyurethane foam. Available from: https://www.epa. gov/sites/production/files/2015-08/documents/ffr_final.pdf

Urbanski, J., Czerwinski, W., Janicka, K., Majewska, F., and Zowall, H. 1977. Handbook of analysis of synthetic polymers and plastics. Chichester: Ellis Horwood Limited.

Valentino, R., Romeo, E., and Misra, A. 2013. Mechanical aspects of micropiles made of reinforced polyurethane resins, Geotech. Geolog. Eng. 31: 463–478.

Valentino, R., Romeo, E., and Stevanoni, D. 2014. An experimental study on the mechanical behaviour of two polyurethane resins used for geotechnical applications. Mech. Mater. 71: 101–113.

Wales, D. S., and Sagar, B. R. 1988. Mechanistic aspects of polyurethane biodeterioration. In: Houghton, D. R., Smith, R. N., Eggins, H. O. W. (eds.) Biodeterioration (7th ed.) (pp. 351-358). London: Elsevier Applied Science.

Witkiewicz, W., and Zieliński, A. 2006. Properties of the polyurethane (PU) light foams. Adv. Mater. Sc. 6: 35-51.

Zhang, K., Nelson, A. M., Talley, S. J., Chen, M., Margaretta, E., Hudson, A. G., Moore, R. B., and Long, T. E. 2016. Non-isocyanate poly (amide-hydroxyurethane)s from sustainable resources. Green Chem. 18: 4667–4681.