Synthesis and characterization of graphene derived from rice husks

Authors

  • Mohammad Shafri Ismail Universiti Teknologi Malaysia
  • Norhaniza Yusof Universiti Teknologi Malaysia
  • Mohd Zamri Mohd Yusop Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Juhana Jaafar Universiti Teknologi Malaysia
  • Farhana Aziz Universiti Teknologi Malaysia
  • Zulhairun Abdul Karim Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n4.1228

Keywords:

Graphene, rice husk, potassium hydroxide, Raman spectroscopy

Abstract

Graphene was successfully synthesized by activating rice husk ash (RHA) using potassium hydroxide (KOH) at 800 oC with 1:2 impregnation ratio. Raman spectroscopy analysis confirmed the presence of graphitic structure. The demonstrated methodology utilizes RHA as carbon source and used as sacrifice to prevent oxidation during synthesis process on the mixture of KOH and RHA against air at high temperature. The novelty of this synthesis methodology use environmentally-friendly biomass resource as a starting material, does not utilize catalysts, and prove that graphene can be synthesized at a relatively low synthesis temperature.

Author Biographies

Mohammad Shafri Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Norhaniza Yusof, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Mohd Zamri Mohd Yusop, Universiti Teknologi Malaysia

Faculty of Mechanical Engineering

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Juhana Jaafar, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Farhana Aziz, Universiti Teknologi Malaysia

Faculty of Chemical and Energy Engineering (FCEE)

Zulhairun Abdul Karim, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

References

Zhu, C., Guo, S., Fang, Y., Dong, S. 2010. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4, 2429- 2437.

Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Zatile, E., Palomares, F. J., Aranda, P. 2011. Supported graphene from natural resources: Easy preparation and applications. Advanced Materials, 23, 5250-5255.

Muramatsu, H., Kim, Y. A., Yang, K. S., Cruz-Silva, R., Toda, I., Yamada, T., Terrones, M., Endo, M., Hayashi, T.,

Saitoh, H. 2014. Rice husk-derived graphene with nano-sized domains and clean edges. Small, 10, 2766-2770.

Singh, P., Bahadur, J., Pal, K. 2017. One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Scientific Research Publishing, 6, 61-71.

Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A., Poliakoff, M. 2012. Valorization of biomass: Deriving more value from waste review. Science, 337, 6095, 695-699.

Wallace, P. R. 1947. The band theory of graphite. Physical Review, 71(9), 622-634.

McClure, J. W. 1956. Diamagnetism of graphite. Physical Review, 104, 666-671.

Semenoff, G. W. 1984. Condensed-matter simulation of a three-dimensional anomaly. Physical Review Letter, 53, 2449-2452.

DiVincenzo, D. P., Mele, E. J. 1984. Self-consistent effective mass theory for intralayer screening in graphite intercalation compounds. Physical Review B. 295(4),1685–1694.

Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P.

N., de Heer, W. A. 2004. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 108, 19912-19916.

Berger, C., Song, Z., Li, T., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., de Heer, W. A. 2006. Electronic confinement and coherence in patterned epitaxial graphene.

Science, 312, 1191-1196.

Pauling, L. 1972. Stirling approximation. Chemical in Britain, 8(10), 447.

Eizenberg, M., and Blakely, J. M. 1978. Carbon monolayer phase condensation on Ni(III). Surface Science. 82, 228-236.

Peierls, R. E. 1935. Quelques proprietes typiques des corpses solides. Annales de l'institut Henri Poincaré, 5(3), 177-222.

Landau, L. D. 1937. Zur Theorie der phasenumwandlungen II. Physikalische Zeitschrift der Sowjetunion, 11, 26-35.

Landau, L. D., and Lifshitz, E. M. 1980. Statistical Physics, Part I. Pergamon Press, Oxford.

Liao, C. D., Tamalampudi, S. R., Cheng, H. C., Chen, Y. T. 2013. Chemical vapor deposition synthesis and Raman spectroscopic characterization of large- area graphene sheets. Journal of Physical Chemistry A, 117(39), 9454-9461.

Manukyan, Rouvimou, S., Wolf, E. E., and Mukasyan, A. S. 2013. Combustion synthesis of graphene materials. Carbon, 62, 302-311.

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, K. 2006. Raman spectrum of graphene and graphene layers. Physic Review Letter, 97,

, 1-4.

Cao, X., Qi, D., Yin, S., Bu, J., Li, F., Goh, C. F., Zhang, S., Chen, X. 2013. Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy. Advanced Materials, 25(21), 2957-2962.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. 2004. Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

Bhuyan, M. S. A., Nizamuddin, M., Maksudul Islam, M., Bipasha, F. A., Hossain, S. S. 2016. Synthesis of graphene. International Nano Letters, 6(2), 65-83.

Bolotin, K. I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., 2008. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351–355.

Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J.A., Geim, A. K., 2008. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 100, 016602, 1-5.

Lee, C., Wei, X. D., Kysar, J.W., Hone, J., 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.

Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., 2008. Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907.

Moser, J., Barreiro, A., Bachtold, A., 2007. Current-induced cleaning of graphene. Applied Physics Letters, 91(16), 163513, 1-4.

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., 2011. Graphene based materials: Past, present and future, Progress in Materials Science, 56(8), 1178–1271.

Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. B., Ruoff, R. S., 2008. Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.

Hummers, W. S., Offeman, R. E., 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

Liang, X., Chang, A. S. P., Zhang, Y., Harteneck, B. D., Choo, H., Olynick, D. L., Cabrini, S., 2008. Electrostatic force assisted exfoliation of pre-patterned few-layer graphenes into device sites. Nano Letters, 9(1), 467–472.

Chen, J. H., Ishigami, M., Jang, C., Hines, D. R., Fuhrer, M. S., Williams, E. D., 2007. Printed graphene circuits. Advanced Materials, 19(21), 3623–3627.

Sun, Z., Yan, Z. Yao, J. Beitler, E. Zhu, Y. and Tour, J.M. 2010. Growth of graphene from solid carbon sources. Nature, 468, 549-552.

Ruan, G., Sun, Z. Peng, Z. and Tour, J. M. 2011. Growth of graphene from food, insects, and waste. ACS Nano, 5 (9). 7601-7607.

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., García, H. 2012. From biomass wastes to large-area, high-quality, N-doped graphene: Catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical

Community (Cambridge), 48(74), 9254-9256.

Kumar, S., Sangwan, P., Dhankhar R. M. V., Bidra, S. 2013. Utilization of rice husk and their ash: A review. Research Journal of Chemical and Environmental Sciences, 1(5), 126-129.

Serra, M. F., M. S., Conconi, M. R., Gauna, G., Suarez, E. F., Aglietti, Rendtorff, N. M. 2016. Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. Journal of Asian Ceramic Societies, 4(1), 61-66.

Madhumita, S., Bhattacharyya, S., and Behera, R. C. 2009. Rice effect of temperature on morphology and phase transformations of nanocrystalline silica obtained from rice husk, Composite Part B, 82(5), 377-386.

Geetha, D., Ananthiand, A., Ramesh, P. S. 2016. Preparation and characterization of silica material from rice husk ash - An economically viable method. Research & Reviews: Journal of Pure and Applied Physics, 4(3), 20-26.

Ferrari, A. C., and Basko, D. M. 2013. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8, 235–246.

Park, S. C., Kim, M., Park, J., Chung, H., Kim, H. Y. 2009. Wide area illumination Raman scheme for simple and nondestructive discrimination of seawater cultured pearls. Journal of Raman Spectroscopy, 40(12), 2187-2192.

Malard, L. M., Pimenta, M. A., Dresselhous, G., Dresselhaus, M. S. 2009. Raman spectroscopy in graphene. Physics Reports, 473(5-6), 51-87.

Wang, Y. Y., Ni, Z. H., Yu, T., Shen, Z. X., Wang, H. M., Wu, Y. H., Chen, W., Wee, A. T. S. 2008. Raman studies of monolayer graphene: The subtrate effect. The Journal of Physical Chemistry C, 112, 10637-10640.

Georgakilas, V. 2014. Functionalization of graphene by other carbon nanostructures. In V. Georgakilas (Ed.) Functionalization of Graphene (pp.255-282). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Downloads

Published

25-08-2019