Effect of catalyst metal species for the synthesis of graphene using chemical vapor deposition method: A review

Authors

  • Mohd ‘Azizir -Rahim Mukri Universiti Teknologi Malaysia
  • Mohd Zamri Mohd Yusop Universiti Teknologi Malaysia
  • Mohd Syafiq Elias Universiti Teknologi Malaysia
  • Mohd Hafiz Dzarfan Othman Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n4.1227

Keywords:

Copper, nickel, alloy, graphene, chemical vapor deposition

Abstract

Enormous characteristics exhibited by two-dimensional carbon-based nanomaterial, graphene attract current researchers in integrating this advanced material into the development of next-generation electronic, optoelectronic, photonic, and photovoltaic devices. The ultimate aim was to synthesis a single layer of graphene with large-size domain with less defect formation. The solid state of the graphene promises ultra-high performance in the devices due to ultra-high electron mobility. Within a decade, previous researchers have narrowed down their studies by applying different types of metal species as catalyst substrate in chemical vapor deposition method. The crucial part was to determine the characteristics of carbon precipitation and diffusion onto the metal surfaces. Each metal-based catalyst and its alloy revealed different behavior according to its carbon solubility and intrinsic properties. Until now, copper, nickel, and its alloy combination provide tremendous finding in the synthetization of graphene. Currently, researchers are still exploring the ideal parameters related to feeding gases, growth temperatures, and working pressures which are essential to each catalyst metals characteristic such as copper, nickel, and its alloy.

Author Biographies

Mohd ‘Azizir -Rahim Mukri, Universiti Teknologi Malaysia

Faculty of Mechanical Engineering

Mohd Zamri Mohd Yusop, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre

Mohd Syafiq Elias, Universiti Teknologi Malaysia

Faculty of Science

Mohd Hafiz Dzarfan Othman, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre

References

Bharadwaj, B. K., Pratap, R., Raghavan, S., 2014, Transfer free suspended graphene devices on silicon using electrodeposited copper, J. Vacuum Sci. Technol. B, 32, 010603, 1–5.

Bhaviripudi, S., Jia, X., Dresselhaus, M. S., Kong, J., 2010, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst, Nano Lett., 10(10), 4128–4133.

Boukhvalov, D. W., Katsnelson, M. I., 2009, Enhancement of chemical activity in corrugated graphene, J. Phys. Chem. C, 113(32), 14176-14178.

Bryce, C., Berk, D., 1995, Kinetics of the dissolution of copper in iron (III) chloride solutions, Ind. Eng. Chem. Res., 34(4), 1412–1418.

Chen, X., Zhao, P., Xiang, R., Kim, S., Cha, J., Chiashi, S., Maruyama, S., 2015, Chemical vapor deposition growth of 5 mm hexagonal single-crystal graphene fromethanol, Carbon, 94, 810–815.

Chen, Z., Wencai, R., Liu, B., Gao, L., Pei, S., Wu, Z. S., Zhao, J., Cheng, H. M., 2010, Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane, Carbon, 48(12), 3543-3550.

Claassen, W. A. P., Bloem, J., 1981, The growth of silicon from silane in cold wall CVD systems, Philips J. Res., 36(2), 122–137.

Cuxart, M.G., Sics, I., Go-Ni, A. R., Pach, E., Sauthier, G., Paradinas, M., Foerster, M., Aballe, L., Fernandez, H.

M., Carlino, V., Pellegrin, E., 2017, Inductively coupled remote plasma-enhanced chemical vapor deposition (RPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures, Carbon, 117, 331-342.

Dai, B., Fu, L., Zou, Z., Wang, M., Xu, H., Wang, S., Liu, Z., 2011, Rational Design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2(522), 1-6.

Dardona, S., Hoey, J., She, Y., Schmidt, W. R., 2016, Direct write of copper-graphene composite using micro-cold spray, AIP Adv., 6, 085013, 1-6.

Ding, D., Solís-Fernández, P., Hibino, H., Ago, H., 2016, Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni, ACS Nano, 10(12), 11196–11204.

Ding, D., Solís-Fernández, P., Yunus, R. M., Hibino, H., Ago, H., 2017, Behavior and role of superficial oxygen in cu for the growth of large single-crystalline graphene, Appl. Surf. Sci., 408, 142–149.

Ding, G., Zhu, Y., Wang, S., Gong, Q., Sun, L., Wu, T., Xie, X., Jiang, M., 2013, Chemical vapor deposition of graphene on liquid metal catalysts, Carbon, 53, 321-326.

Du, X., Skachko, I., Barker, A., andrei, E. Y., 2008, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3(8), 491-495.

Eversteyn, F. C., Severin, P. J. W., Brekel, V. D., C.H.J., Peek, H.L., 1970, A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor, J. Electrochem. Soc., 117, 925–931.

Fu, Z., Zhang, Y., Yang, Z., 2015, Growth mechanism and controllable synthesis of graphene on Cu–Ni alloy surface in the initial growth stages, Phys. Lett. A, 379(20-21), 1361-1365.

Futko, S. I., Shulitskii, B. G., Labunov, V. A., Ermolaeva, E. M., 2016, Parametric investigation of the isothermal kinetics of growth of graphene on a nickel catalyst in the process of chemical vapor deposition of hydrocarbons, J. Eng. Phys. Thermophys., 89(6), 1487-1499.

Gan, L., Luo, Z., 2013, Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper, ACS Nano, 7(10), 9480–9488.

Gao L., Guest J. R., Guisinger N. P., 2010, Epitaxial graphene on Cu(III), Nano Lett., 10(9), 3512−3516.

Gao, M., Pan, Y., Huang, L., Zhang, L. Z., Hu, H., Guo, H. M., Du, S. X., Gao, H.-J., 2011, Epitaxial growth and structural property of Graphene on Pt(III), Appl. Phys. Lett., 98, 033101, 1-3.

Ge, C., Li, H., Li, M., Li, C., Wu, X., Yang, B., 2015, Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers, Carbon, 95, 1–9.

Georgiadou, M., Alkire, R., 1993, Anisotropic chemical etching of copper foil: II. Experimental studies on shape evolution, J. Electrochem. Soc., 140(5), 1348-1355.

Ghaemi, F., Abdullah, L. C., Rahman, N. M. A. N. A., Najmuddin, S. U. F. S., Abdi, M. M., Ariffin, H., 2017, Synthesis and comparative study of thermal, electrochemical, and cytotoxicity properties of graphene flake and sheet, Res. Chem. Intermed., 43(8), 4981-4991.

Hao, Y., Bharathi, M. S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C. W., Tutuc, E., Yakobson, B.I., Mccarty, K. F., Zhang, Y.W., Kim, P., Hone, J., Colombo, L., Ruoff, R. S., 2013, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science, 342(6159), 720–723.

Iwasaki, T., Park, H. J., Konuma, M., Lee, D. S., Smet, J. H., Starke, U., 2011, Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(III), Nano Lett., 11(1), 79-84.

Joyce, B. A., Bradley, R. R., 1963, Epitaxial growth of silicon from pyrolysis of mono-silane on silicon substrates, J. Electrochem. Soc., 110, 1235-1240.

Kamins, T., 1988, Polycrystalline silicon for integrated circuit applications, Kluwer Academic Publishers, 1-40.

Karamat, S., Sonusen, S., Celik, Ü., Uysallı, Y., Oral, A., 2016, Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition, Appl. Surf. Sci., 368, 157–164.

Kidambi, P. R., Terry, R. A., Wang, L., Boutilier, M. S. H., Jang, D., Kong, J., Karnik, R., 2017, Assessment and control of the impermeability of graphene for atomically thin membranes and barriers, Nanoscale, 9(24), 8496-8507.

Kim, K. S., Jang, H., Zhou, Y., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J. Y, Hong, B. H., 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710.

Kumar, A., Lee, C. H., 2013, Synthesis and biomedical applications of graphene: Present and future trends, Advances in Graphene Science, Dr. M. Aliofkhazraei (Ed.), Intech, 55-75.

Kwon S. Y., Ciobanu C. V., Petrova V., Shenoy V. B., Bareno J., Gambin V., Petrov I., Kodambaka S., 2009, Growth of semiconducting graphene on palladium, Nano Lett., 9(12), 3985−3990.

Lee, Y. H., Lee, J. H., 2010, Scalable growth of free-standing graphene wafers with Copper (Cu) catalyst on SiO2/Si substrate: Thermal conductivity of the wafers, Appl. Phys. Lett., 96, 083101, 1-3

Li X., Cai W., Colombo L., Ruoff R. S., 2009, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett., 9(12), 4268−4272.

Li X., Magnuson C. W., Venugopal A., An J., Suk J. W., Han B., Borysiak M., Cai W., Velamakanni A., Zhu Y., Fu L., Vogel E. M., Voelkl E., Colombo L., Ruoff R. S., 2010, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett., 10(11), 4328−4334.

Li, J., Wang, X. Y., Liu, X. R., Jin, Z., Wang, D., Wan, L. J., 2015, Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure, J. Mater. Chem. C, 3, 3530–3535.

Li, Q., Zhao, Z., Yan, B., Song, X., Zhang, Z., Li, J., Wu, X., Bian, Z., Zou, X., Zhang, Y., Liu, Z., 2017, Nickelocene-precursor-facilitated fast growth of graphene/H-BN vertical heterostructures and its applications in

OLEDs, Adv. Mater., 1701325, 1-9.

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S., 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils,

Science, 324(5932), 1312–1314.

Li, X., Magnuson, C.W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., Ruoff, R. S., 2011, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, J.

Am. Chem. Soc., 133(9), 2816–2819.

Liu W., Li H., Xu C., Khatami Y., Banerjee K., 2011, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon, 49(13), 4122–4130.

Liu, X., Lin, T., Zhou, M., Bi, H., Cui, H., Wan, D., Huang, F., Lin, J., 2014, A novel method for direct growth of a few-layer graphene on Al2O3 film, Carbon, 71, 20–26.

Ma, Y., Jang, H., Kim, S., Pang, C., Chae, H., 2015, Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process,

Nanoscale Res. Lett., 10(308), 1-8.

Mattevi, C., Hokwon, K., Manish, C., 2011, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., 21(10), 3324–3334.

Miseikis, V., Convertino, D., Mishra, N., Gemmi, M., Mashoff, T., Heun, S., Haghighian, N., Bisio, F., Canepa, M.,

Piazza, V., Coletti, C., 2015, Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor, 2D Mater., 2(1), 014006, 1-12.

Mohsin, K. M., Srivastava, A., Sharma, A., Mayberry, C., Fahad, M. S., 2016, Current transport in graphene/copper hybrid nano ribbon interconnect: A first principle study. ECS Trans., 75(13), 49-53.

N'diaye A. T., Coraux, J., Plasa, T. N., Busse, C., Michely, T., 2008, Structure of epitaxial graphene on Ir(III), New J. Phys., 10, 043033, 1-16.

Nanda, K. K., 2009, Size-dependent melting of nanoparticles: Hundred years of thermodynamic model, Pramana-J. Phys., 72(4), 617-628.

Ning, J., Wang, D., Chai, Y., Feng, X., Mu, M., Guo, L., Zhang, J., Hao, Y., 2017, Review on mechanism of directly

fabricating wafer-scale graphene on dielectric substrates by chemical vapor deposition, Nanotechnol., 28, 284001, 1-13.

Otakar, F., Jana, V., Vaclav, H., Ladislav, K., Martin, K., 2014, Interaction between graphene and copper substrate: The role of lattice orientation, Carbon, 68, 440-451.

Papon, R., Sharma, K. P., Mahayavanshi, R. D., Sharma, S., Vishwakarma, R., Rosmi, M. S., Kawahara, T., Cline, J., Kalita, G., Tanemura, M., 2016, Cuni binary alloy catalyst for growth of nitrogen-doped graphene by low pressure chemical vapor deposition, Phys. Status Solidi RRL, 10(10), 749-752.

Peng, K.-J., Wu, C.-L., Lin, Y.-H., Liu, Y.-J., Tsai, D. P., Pai, Y.-H., Lin, G.-R., 2013, Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature, J. Mater. Chem. C, 1(24), 3862-3870.

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., Kong, J., 2009, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9(8), 3087-3087.

Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J. A., Kong, J., 2009, Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res., 2(6), 509–516.

Seah, C. M., Chai, S. P., Mohamed A. R., 2014, Mechanism of graphene growth by chemical vapor deposition on transition metals, Carbon, 70, 1-21.

Shan, C., Tang, H., Wong, T., He, L., Lee, S.-T., 2012, Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier, Adv. Mater., 24, 2491–2495.

Sicot M., Bouvron S., Zander O., Rudiger U., Dedkov Y. S., Fonin M., 2010, Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh(III), Appl. Phys. Lett., 96, 093115, 1-3.

Smith, W. F., Javad, H., 2003, Foundations of Materials Science and Engineering, Mcgraw-Hill Professional, pp. 223.

Solache-Carranco, H., Juarez-Diaz, G., Galvan-Arellano, M., Martinez-Juarez, J., Romero-Paredes, G., Pena-Sierra, R., 2008, Raman scattering and photoluminescence studies on Cu2O, 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, 421–424.

Sutter P. W., Flege J. I., Sutter E. A., 2008, Epitaxial graphene on ruthenium, Nat. Mater., 7(5) 406−411.

Sutter P., Sadowski J. T., Sutter E., 2009, Graphene on Pt(III): Growth and substrate interaction, Phys. Rev. B, 80, 245411, 1-10

Suzuki, S., Kiyosumi, K., Nagamori, T., Tanaka, K., Yoshimura, M., 2015, Low density growth of graphene by air introduction in atmospheric pressure chemical vapor deposition, e-J. Surf. Sci. Nanotechnol., 13, 404–409.

Takesaki, Y., Kawahara, K., Hibino, H., Okada, S., Tsuji, M., Ago, H., 2016, Highly uniform bilayer graphene on epitaxial Cu−Ni(III) alloy, Chem. Mater., 28, 4583-4592

Tao, M., 1993, Growth kinetics and reaction mechanism of silicon chemical vapour deposition from silane, Thin Solid Films, 223(2), 201–211.

Tian, F., Li, H., Li, M., 2017, Synthesis of vertical graphene flowers as a photoelectrocatalyst for organic degradation, Micro. Nano. Lett., 12(4), 252–254.

Wang L., Zhang X., Chan H. L.W., Yan F., Ding F., 2013, Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth, J. Am. Chem. Soc., 135(11), 4476−4482.

Weatherup, R. S., Dlubak, B., Hofmann, S., 2012, Kinetic control of catalytic CVD for high-quality graphene at low temperatures, ACS Nano, 6(11), 9996–10003

Wu, T. R., Zhang, X. F., Yuan, Q. H., Xue J. C., Lu G. Y., Liu Z. H., Wang H. S., Wang H. M., Ding F., Yu Q. K., Xie X. M., Jiang M. H., 2016, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on

Cu-Ni alloys, Nat. Mater., 15(1), 43-47.

Yang, R. T., Goethel, P. J., Schwartz, J. M., Lund, C. R. F., 1990, Solubility and diffusivity of carbon in metals, J. Catal., 122, 206-210.

Zang, X., Zhou, Q., Chang, J., Teh, K. S., Wei, M., Zettl, A., Lin, L., 2017, Synthesis of single-layer graphene on nickel using a droplet CVD process, Adv. Mater. Interfaces, 1600783, 1-7.

Zeng, M., Tan, L., Wang, J., Chen, L., Rümmeli, M. H., Fu, L., 2014, Liquid metal: An innovative solution to uniform graphene films, Chem. Mater., 26(12), 3637-3643.

Ding, G. Q., Zhu, Y., Wang, S. M., Gong, Q., Sun, L., Wu, T. R., Xie, X. M., Jiang, M. H., 2013, Chemical vapor deposition of graphene on liquid metal catalysts, Carbon, 53, 321-326.

Zhou, H., Yu, W. J., Liu, L., Cheng, R., Chen, Y., Huang, X., Liu, Y., Wang, Y., Huang, Y., Duan, X., 2013, Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene, Nat. Commun., 4, 2096, 1-8.

Downloads

Published

25-08-2019