Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review


  • Khong Nee Koo Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Mohd Hafiz Dzarfan Othman Universiti Teknologi Malaysia
  • Noriah Bidin Universiti Teknologi Malaysia
  • Mukhlis A Rahman Universiti Teknologi Mala



magnetite, nanoparticles, superparamagnetic properties


Magnetic magnetite (Fe3O4) nanoparticles have attracted a great deal of attention in both fundamental research and practical applications over the past decades. Down to the nanoscale, superparamagnetic Fe3O4 nanoparticles with only a single magnetic domain exhibit high magnetic susceptibility, which provides a stronger and faster magnetic response. Their superparamagnetic properties together with other intrinsic properties such as low toxicity, high surface area-to-volume ratio and simple separation methodology, making them ideal for environmental remediation, biomedical, and agricultural applications. This review discusses three conventional wet chemical methods, including chemical co-precipitation, sol-gel synthesis and thermal decomposition for the preparation of superparamagnetic Fe3O4 nanoparticles with controlled size and magnetic properties. Nowadays, with the growing research interest in Fe3O4 nanoparticles, there is a great amount of researches reported on efficient routes to prepare size-controlled magnetic nanoparticles. Thus, this review is designed to report the recent information from synthesis to the characterization of Fe3O4 nanoparticles as well as the discussion of future perspective in this research area.

Author Biographies

Khong Nee Koo, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Mohd Hafiz Dzarfan Othman, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Noriah Bidin, Universiti Teknologi Malaysia

Laser Centre, Ibnu Sina ISIR

Mukhlis A Rahman, Universiti Teknologi Mala

Advanced Membrane Technology Research Centre (AMTEC)



Aftabtalab, A., Sadabadi, H., Chakra, C. S., Rao, K. V., SarahShaker, Mahofa, E. P. (2014). Magnetite nanoparticles (Fe3O4) synthesis for removal of Chromium (VI) from waste water. International Journal of Scientific & Engineering Research, 5(1), 1419 - 1423.

Akbarzadeh, A., Samiei, M., Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7, 144.

Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49-67.

Aphesteguy, J. C., Kurlyandskaya, G. V., de Celis, J. P., Safronov, A. P., Schegoleva, N. N. (2015). Magnetite nanoparticles prepared by co-precipitation method in different conditions. Materials Chemistry and Physics, 161, 243-249.

Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., Wiesner, M. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641.

Babay, S., Mhiri, T., Toumi, M. (2015). Synthesis, structural and spectroscopic characterizations of maghemite g-Fe2O3 prepared by one-step coprecipitation route. Journal of Molecular Structure, 1085, 286-293.

Barrios, V. A. E., Méndez, J. R. R., Aguilar, N. V. P., Espinosa, G. A., Rodríguez, J. L. D. (2012). FTIR - an essential characterization technique for polymeric materials, infrared spectroscopy. In P. T. Theophile (Ed.), Materials Science, Engineering and Technology. London: IntechOpen Limited.

Baumgartner, J., Bertinetti, L., Widdrat, M., Hirt, A. M., Faivre, D. (2013). Formation of magnetite nanoparticles at low temperature: From superparamagnetic to stable single domain particles. PLoS ONE, 8(3), 1-6.

Busquets, M., Estelrich, J., Sánchez-Martín, M.-J. (2015). Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. International Journal of Nanomedicine, 10, 1727–1741.

Campos, E. A., Stockler Pinto, D. V. B., Oliveira, J. I. S. d., Mattos, E. D. C., Dutra, R. D. C. L. (2015). Synthesis, characterization and applications of iron oxide nanoparticles - a short review. Journal of Aerospace Technology and Management, 7(3), 267-276.

Cheng, Z., Tan, A. L. K., Tao, Y., Shan, D., Ting, K. E., Yin, X. J. (2012). Synthesis and Characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. International Journal of Photoenergy, 2012, Article ID 608298.

Chu, X., Hou, Y. L. (2017). Magnetic nanomaterials: Fundamentals, synthesis and applications. In Y. L. Hou, D. J. Sellmyer (Eds.), Overview of Synthesis of Magnetic Nanomaterials, 83-120. United States: Wiley.

Cornell, R. M., Schwertmann, U. (2000). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Weinheim: Wiley-VCH.

Felici, R. (2002). Surface X-Ray Diffraction Characterization of Materials. United States: John Wiley & Sons, Inc.

Fissan, H., Ristig, S., Kaminski, H., Asbach, C., Epple, M. (2014). Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Analytical Methods, 6, 7324-7334.

Fu, C., Ravindra, N. M. (2012). Magnetic iron oxide nanoparticles: Synthesis and applications. Bioinspired, Biomimetic and Nanobiomaterials, 1, 229-244.

Gaffney, J. S., Marley, N. A., Jones, D. E. (2002). Fourier Transform Infrared (FTIR) Spectroscopy Characterization of Materials. United States: John Wiley & Sons, Inc.

Gash, A. E., Tillotson, T. M., Satcher, J. H., Poco, J. F., Hrubesh, L. W., Simpson, R. L. (2001). Use of Epoxides in the Sol Gel Synthesis of Porous Iron (III) Oxide Monoliths from Fe (III) Salts. Chemistry of Materials, 13 (200), 999 - 1007.

Ghazanfari, M. R., Kashefi, M., Shams, S. F., Jaafari, M. R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International, 2016, 32.

Gorski, C. A., Scherer, M. M. (2010). Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review American Mineralogist, 95, 1017–1026.

Grössinger, R. (2008). Characterisation of hand magnetic materials. Journal of Electrical Engineering, 59, 15 - 20.

Hariani, P. L., Faizal, M., Ridwan, R., Marsi, M., Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. International Journal of Environmental Science and Development, 336-340.

Hasany, S. F., Ahmed, I., J, R., Rehman, A. (2013). Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanoscience and Nanotechnology, 2(6), 148-158.

Hurley, K. R., Ring, H. L., Kang, H., Klein, N. D., Haynes, C. L. (2015). Characterization of Magnetic nanoparticles in biological matrices. Analytical Chemistry, 87 (23), 11611–11619.

Indira, T. K., Lakshmi, P. K. (2010). Magnetic nanoparticles - a review. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3), 1035-1042

Joshi, M., Bhattacharyya, A., Ali, S. W. (2008). Characterization techniques for nanotechnology applications in textiles. Indian Journal of Fiber & Textile Research, 33, 304 - 317.

Khan, U. S., Khattak, N. S., Rahman, A., Khan, F. (2011). Optimal method for preparation of magnetite nanoparticles. Journal of the Chemical Society of Pakistan, 33, 628 - 633.

Kouhi, M., Vahedi, A., Akbarzadeh, A., Hanifehpour, Y., Joo, S. W. (2014). Investigation of quadratic electro-optic effects and electroabsorption process in GaN/AlGaN spherical quantum dot. Nanoscale Research Letters, 9, 131–136

Lassenberger, A., Grunewald, T. A., van Oostrum, P. D. J., Rennhofer, H., Amenitsch, H., Zirbs, R., Lichtenegger, H. C., Reimhult, E. (2017). Monodisperse iron oxide nanoparticles by thermal decomposition: Elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chemistry of Materials, 29(10), 4511–4522.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064-2110.

Laurent, S., Henoumont, C., Stanicki, D., Boutry, S., Lipani, E., Belaid, S., Muller, R. N., Vander Elst, L. (2017). Magnetic properties. In: MRI Contrast Agents. Springer Briefs in Applied Sciences and Technology. Singapore: Springer, 5-11.

Lee, N., Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41, 2575-2589.

Leonard, D. N., Chandler, G. W., Seraphin, S. (2012). Scanning Electron Microscopy Characterization of Materials. United States: John Wiley & Sons, Inc.

Lopez-Perez, J. A., Lopez-Quintela, M. A., Mira, J., Rivas, J., Charles, S. W. (1997). Advances in the preparation of magnetic nanoparticles by the microemulsion method . Journal of Physical Chemistry B, 101, 8045 – 8047.

Ma, J., Chen, K. Z. (2016). Discovery of superparamagnetism in sub-millimeter-sized magnetite porous single crystals. Physics Letters A, 380(41), 3313 - 3318.

Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z., Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533-7548.

Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONS): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63(1-2), 24-46.

Maity, D., Choo, S. G., Yi, J., Ding, J., Xue, J. M. (2009). Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. Journal of Magnetism and Magnetic Materials, 321(9), 1256-1259.

Maity, D., Ding, J., Xue, J. M. (2008). Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Functional Materials Letters, 1(3), 189-193.

Majidi, S., Sehrig, F. Z., Farkhani, S. M., Goloujeh, M. S., Akbarzadeh, A. (2014). Current methods for synthesis of magnetic nanoparticles. Artificial Cells Nanomedicine Biotechnology, 44(2), 722-734.

Mascolo, M., Pei, Y., Ring, T. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 6(12), 5549-5567.

Massart, R., Cabuil, V. (1987). Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-yield and paricle-size control. Journal of Chemical Physics, 84, 967 - 973.

Nazari, M., Ghasemi, N., Maddah, H., Motlagh, M. M. (2014). Synthesis and characterization of maghemite nanopowders by chemical precipitation method. Journal of Nanostructure in Chemistry, 4(99), 1-5.

Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., Kim, H. W., Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79.

Pereira, C., Pereira, A. M., Fernandes, C., Rocha, M., Mendes, R., Fernández-García, M. P., Guedes, A., Tavares, P. B., Greneche, J. M., Araujo, J. P., Freire, C. (2012). Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials, 24, 1496 - 1504.

Qi, H. Z., Yan, B., & Li, C. k. (2010, 3-8 Jan. 2010). Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. Paper presented at the 3rd International Nanoelectronics Conference (INEC).

Scepka, T. (2016). Noninvasive control of magnetic state in ferromagnetic nanodots by Hall probe magnetometry. (Doctoral Degree), Slovak University of Technology.

Setina, J., Gabrene, A., Juhnevica, I., Mezinskis, G. (2013). Characterization of iron oxide nanoparticles for sol-gel dip-coating method prepared thin films Advanced Materials Research, 704, 275-280.

Sjogren, C. E., Johansson, C., Naevestad, A., Sontum, P. C., Briley-Saebo, K., Fahlvik, A. K. (1997). Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magnetic Resonance Imaging, 15, 55–67 .

Shaker, S., Zafarian, S., Chakra, C. S., Rao, K. V. (2013). Preparation and Characterization of Magnetite Nanoparticles by Sol-gel Method for Water Treatment. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2969-2973.

Sharma, R., Bisen, D. P., Shukla, U., Sharma, B. G. (2012). X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Research in Science and Technology, 4(8), 77-79.

Sugimoto, T., Matijevic, E. (1980). Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels. Journal of Colloid and Interface Science, 74, 227-243.

Sun, S.-N., Wei, C., Zhu, Z.-Z., Hou, Y.-L., Venkatraman, S. S., Xu, Z.-C. (2014). Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3), 037503.

Sun, S. H., Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124 (28), 8204 - 8205.

Sundar, S., Piraman, S. (2013). Nanospheres of Fe3O4 Synthesis through Solgel technique and their structural & magnetic characterization. Indian Journal Of Applied Research, 3(7), 123-126.

Tang, N. J., Zhang, W., Jiang, H. Y., Wu, X. L., Liu, W., Du, Y. W. (2004). Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method. Journal of Magnetism and Magnetic Materials, 282, 92-95.

Tartaj, P., Morales, M. d. P., Verdaguer, S. V., Carreno, T. G., Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics,36, R182-R197.

Teja, S. A., Koh, P. Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45.

Wahadjuddin Arora, S. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 7, 3445–3471.

Wu, W., He, Q., Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and Surface functionalization strategies. Nanoscale Research Letters, 3( 11), 397–415.

Wu, W., Wu, Z., Yu, T., Jiang, C., Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501.

Xie, J., Xu, C. J., Xu, Z. C., Hou, Y. L., Young, K. L., Wang, S. X., Pourmand, N., Sun, S. H. (2006). Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 18 (23), 5401 - 5403.

Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M., Zou, G. (2007). Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. Journal of Magnetism and Magnetic Materials, 309(2), 307-311.

Xu, J. K., Zhang, F. F., Sun, J. J., Sheng, J., Wang, F., Sun, M. (2014). Bio and nanomaterials based on Fe3O4. Molecules, 19(12), 21506-21528.

Xu, Z. C., Shen, C. M., Hou, Y. L., Gao, H. J., Sun, S. H. (2009). Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 21 (9), 1778 - 1780.

Zhang, W.-x. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5(3-4), 323–332.

Zhao, Y., Qiu, Z., Huang, J. (2008). Preparation and analysis of fe3o4 magnetic nanoparticles used as targeted-drug carriers* *supported by the technology project of jiangxi provincial education department and jiangxi provincial science department. Chinese Journal of Chemical Engineering, 16(3), 451-455.