Low cost palm oil fuel ash based ceramic membranes for oily water separation
DOI:
https://doi.org/10.11113/mjfas.v14n4.1218Keywords:
Palm oil fuel ash, ceramic membrane, phase inversion, sintering, oily waterAbstract
Ceramic membranes have been gaining so much interest for oily water separation due to their superior characteristics such as good anti-fouling property, superhydrophilic, as well as excellent thermal and chemical stabilities. However, ceramic membranes are very expensive which hinders their uses in large scale applications. Therefore, the aim of our study is to develop a low cost palm oil fuel ash (POFA) based ceramic hollow fiber ceramic membrane for oily water separation application. An asymmetric membrane structure consisting of sponge-like and macrovoid layers were acquired using a combined phase inversion and sintering technique. The membranes were sintered at different temperatures ranging from 1000 to 1150 °C. The sintered membranes were characterized in terms of morphology, mechanical strength, porosity, permeate flux and oil rejection performance. A high oil rejection efficiency of up to 96.0% was obtained for the membrane sintered at 1050 °C with the permeate flux of 185.42 L/m2h at the applied pressure of 3 bar. Based on the comparison with other ceramic membranes reported in the literature, it can be concluded that POFA based ceramic hollow fiber membrane showed a comparable performance and thus can be a promising low cost alternative ceramic membrane for oily water separation application.
References
Abadi, S. R. H., Sebzari, M. R., Hemati, M., Rekabdar, F., & Mohammadi, T. (2011). Ceramic membrane performance in microfiltration of oily wastewater. Desalination, 265(1), 222-228. doi: https://doi.org/10.1016/j.desal.2010.07. 055
Abbasi, M., Mirfendereski, M., Nikbakht, M., Golshenas, M., & Mohammadi, T. (2010). Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment. Desalination, 259(1), 169-178. doi: https://doi.org/10.1016/j.desal.2010.04.013
Adam, M. R., Hafiz Puteh, M., Rahman, M., Jaafar, J., & Othman, M. H. (2017). A fabrication of a low-cost zeolite based ceramic membrane via phase inversion and sintering technique. Malaysian Journal of Analytical Sciences, 21, 391-401. doi: 10.17576/mjas-2017-2102-14
Ali, M. S., Hanim, M. a. A., Tahir, S. M., Jaafar, C. N. A., Mazlan, N. & Amin Matori, K. (2017). The effect of commercial rice husk ash additives on the porosity, mechanical properties, and microstructure of alumina ceramics. Advances in Materials Science and Engineering, 2017, 10. doi: 10.1155/2017/2586026
Altwair, N. M., & Kabir, S. (2010). Palm Oil Fuel Ash (POFA) An environmentally-friendly supplemental cementitious material for concrete production. International Conference on Material Science and 64th RILEM Annual Week - MATSCI, 6-10 September, Aachen, Germany, 234-247.
Chen, M., Zhu, L., Dong, Y., Li, L., & Liu, J. (2016). Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment. ACS Sustainable Chemistry & Engineering, 4(4), 2098-2106. doi: 10.1021/acssuschemeng. 5b01519
Cui, J., Zhang, X., Liu, H., Liu, S., & Yeung, K. L. (2008). Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of Membrane Science, 325(1), 420-426. doi: https://doi.org/10.1016/j.memsci.2008.08.015
Gao, S., Shi, Z., Wen Zhang, B., Zhang, F., & Jin, J. (2014). Photo-induced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano, 8(6), 6344-6352. doi: 10.1021/nn501851a
Han, L.-F., Xu, Z.-L., Cao, Y., Wei, Y.-M., & Xu, H.-T. (2011). Preparation, characterization and permeation property of Al2O3, Al2O3–SiO2 and Al2O3–kaolin hollow fiber membranes. Journal of Membrane Science, 372(1), 154-164. doi: https://doi.org/10.1016/j.memsci.2011.01.065
Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A. F., Rahman, M. A., Jaafar, J., Jamil, S. M., & Mohtor, N. H. (2017). Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation. Materials Letters, 191, 119-122. doi: 10.1016/j.matlet.2016.12. 099
Kingsbury, B. F. K., & Li, K. (2009). A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science, 328(1-2), 134-140. doi: 10.1016/j.memsci.2008.11.050
Li, L., Chen, M., Dong, Y., Dong, X., Cerneaux, S., Hampshire, S., Cao, J., Zhu, L., Zhu, Z., & Liu, J. (2016). A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method. Journal of the European Ceramic Society, 36(8), 2057-2066. doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.020
Madaeni, S. S., Ahmadi Monfared, H., Vatanpour, V., Arabi Shamsabadi, A., Salehi, E., Daraei, P., Laki, S., & Khatami, S. M. (2012). Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination, 293(Supplement C), 87-93. doi: https://doi.org/ 10.1016/j.desal.2012.02.028
Mohtor, N. H., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., & Abdulhameed, M. A. (2017). Investigation on the effect of sintering temperature on kaolin hollow fiber membrane for water application. Jurnal Teknologi, 79(1-2), 47-51. doi:
http://dx.doi.org/10.11113/jt.v79.10436
Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2009). Treatment of Oily Waste Water Using Low-Cost Ceramic Membrane: Flux decline mechanism and economic feasibility. Separation Science and Technology, 44(12), 2840-2869. doi: 10.1080/01496390903136004
Othman, M. H. D., Hubadillah, S. K., Adam, M. R., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2017). Silica-based hollow fiber membrane for water treatment. In K. Ghasemzadeh (Ed.), Current Trends and Future Developments on (Bio-) Membranes (pp. 157-180). Amsterdam, Netherlands: Elsevier.
Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357(Supplement C), 197-207. doi: https://doi.org/10.1016/j.desal.2014.11.023
Pagidi, A., Saranya, R., Arthanareeswaran, G., Ismail, A. F., & Matsuura, T. (2014). Enhanced oil–water separation using polysulfone membranes modified with polymeric additives. Desalination, 344(Supplement C), 280-288. doi: https://doi.org/10.1016/j.desal.2014.03.033
Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric Optimization using response surface methodology. Journal of Water Process Engineering, 13(Supplement C), 27-43. doi: https://doi.org/10.1016/ j.jwpe.2016.07.008
Thomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable and Sustainable Energy Reviews, 80, 550-561. doi: http://dx.doi.org/10.1016/j.rser.2017.05.128
Vinoth Kumar, R., Kumar Ghoshal, A., & Pugazhenthi, G. (2015). Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. Journal of Membrane Science, 490(Supplement C), 92-102. doi: https://doi.org/10.1016/j.memsci.2015.04.066
Wang, J.-W., Li, L., Zhang, J.-W., Xu, X., & Chen, C.-S. (2016). β-sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation. Journal of the European Ceramic Society, 36(1), 59-65. doi: http://dx.doi.org/10.1016/j.jeurceramsoc .2015.09.027
Zhu, L., Chen, M., Dong, Y., Tang, C. Y., Huang, A., & Li, L. (2016). A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Research, 90(Supplement C), 277-285. doi: https://doi.org/10.1016/ j.watres.2015.12. 035