Sulfonated PEI membrane with GPTMS-TiO2 as a filler for potential direct methanol fuel cell (DMFC) applications

Authors

  • Eka Cahya Muliawati Institute of Teknologi Sepuluh Nopember
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Juhana Jaafar Universiti Teknologi Malaysia
  • Nurul Widiastuti Institute of Teknologi Sepuluh Nopember
  • Mardi Santoso Institute of Teknologi Sepuluh Nopember
  • Muhammad Taufiq Salleh Universiti Teknologi Malaysia
  • Silvana Dwi Nurherdiana Institute of Teknologi Sepuluh Nopember
  • Lukman Atmaja Institute of Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.11113/mjfas.v15n4.1216

Keywords:

sulfonated polyetherimide, titanium dioxide, blend membrane, direct methanol fuel cell, glycidyloxypropyltrimethoxysilane

Abstract

This study addresses the effect of GPTMS-modified titanium dioxide (TiO2) which composited sulfonated polyetherimide (SPEI) as a proton exchanger on direct methanol fuel cell (DMFC). The membrane fabrication is chiefly based on phase-inversion method after GPTMS-TiO2 and SPEI were prepared separately. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), ion exchange capacity (IEC), proton conductivity, water uptake, methanol permeability and mechanical properties were utilized to characterize and measure their physical and thermal stability. As a result, a high water uptake and IEC performance are achieved using the fabricated membrane as well as low methanol permeability which compared to Nafion 117 membranes. The membrane performance is improved using 20 wt% SPEI and 5wt% TiO2-5 wt% GPTMS with an optimum result of 3 times lower in terms of methanol uptake and methanol permeability with proton conductivity of 21 mS.cm-1 than the remaining membranes and Nafion. Thus, the obtained results of SPEI/TiO2-GPTMS can be promoted as a novel polymeric membrane for DMFC.

Author Biographies

Eka Cahya Muliawati, Institute of Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Juhana Jaafar, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC)

Nurul Widiastuti, Institute of Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Mardi Santoso, Institute of Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Muhammad Taufiq Salleh, Universiti Teknologi Malaysia

Faculty of Petroleum and Renewable Energy Engineering

Silvana Dwi Nurherdiana, Institute of Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Lukman Atmaja, Institute of Teknologi Sepuluh Nopember

Department of Chemistry, Faculty of Mathematics and Natural Sciences

References

Baglio, V., Aric‘o, A. S., Blasi, A. D., Antonucci, V., Antonucci, P. L., Licoccia, S. 2005. Nafion–TiO2 composite DMFC membranes: Physico-chemical properties of the filler versus electrochemical performance. Journal of Electrochimica Acta, 50,124, 1- 6.

Chen, S. Y, Han, C. C., Tsai, C. H., Huang, J., Chen, Y. W. 2007. Effect of morphological properties of ionic liquidtemplated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at

elevated temperature and low relative humidity. Journal of Power Sources, 171, 363–76.

Guhathakurta, S., Min, K. 2009. Influence of crystal morphology of 1H-1, 2, 4-triazole on anhydrous state proton conductivity of sulfonated bisphenol A polyetherimide based polyelectrolytes. Polymer, 50(4), 1034-1045.

Hammami R., Ahamed, Z., Charradi, K., Beji, Z., Ben Assaker, I., Ben Naceur, J., Auvity, B., Squadrito, G., Chtourou, R. 2012. Hybrid polymer

electrolytes Nafion-TiO2 for PEMFCs: Synthesis and characterization. VIème Congrès International sur les Energies Renouvelables et l’Environnement, 1-6.

Heo, Y., Sungjin Yun, Hyungu Im, Jooheon Kim. 2012. Low methanol permeable sulfonated poly(ether imide)/sulfonated multiwalled carbon nanotube membrane for direct methanol fuel cell. Journal of Applied Polymer Science, 00, 1- 11.

Liu, S., Wang, L., Ding, Y., Liu, B., Han, X., Song, Y. 2014. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochimica Acta, 130, 90-96.

Lu, J. L., Qing Hong Fang, Sheng Li Li, San Ping Jiang. 2013. A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 427, 101-107.

Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., Arico, A. S. 2013. Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534.

Ma, J., Yogeshwar Sahai. 2013. Chitosan biopolymer for fuel cell applications. Carbohydrate Polymers. 92, 955-975.

Muliawati, E. C., Santoso, M., Ismail, A. F., Jaafar, J., Salleh, M. T., Nurherdiana, S. D., Widiastuti, N. 2017. Poly(eugenol sulfonate)–sulfonated polyetherimide new blends membrane promising for direct methanol fuel cell. Malaysian Journal of Analytical Sciences, 21(3), 659 – 668.

Muliawati, E. C., Santoso, M., Ismail, A. F., Jaafar, J., Widiastuti, N. 2017. Poly(eugenol sulfonate)–sulfonated polyetherimide – Titanium Dioxide (TiO2) new blends membrane promising for direct methanol fuel cell. Proceeding of The 7th Anual Basic Science International Conference, ISSN 2338-0128 (3), 36-39. 7-8 March, Indonesia.

Purwanto, M., Atmaja, L., Mohamed, M. A., Salleh, M. T., Jaafar, J., Ismail, A. F., Widiastuti, N. 2016. Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Advances, 6(3), 2314-2322.

Rajagopalan M., Jin-Han, J., II-Kwon, O. 2010. Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide. Sensors and Actuators B, 151, 198–204.

Santiago E. I., Isidoro, R. A., Dresch, M. A., Matos, B. R., Linardi, M., Fonseca, F.C. 2009. Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Journal Electrochimica Acta, 54, 41117.

Shen, L. Q., Xu, Z. K., Liu, Z. M., Xu, Y. Y. 2003. Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: Preparation, morphologies and anti-fouling properties. Journal of Membrane Science, 218(1), 279-293.

Shu, Y. C., Chuang, F. S., Tsen, W. C., Chow, J. D., Gong, C., Wen, S. 2008. Journal of Applied Polymer Science, 108(3), 1783-1791.

Tohidian, M., Seyed, R. G., Seyed E. S., Erfan, D., Mohammad, M. H-S. 2013. Organically modified montmorillonite and chitosan phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry, 17, 2123–2137.

Ting, Y., Longjuan, Pu, Qinghong, H., Haifeng, Z., Xuemei, L., Hui, Y. 2014. An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochimica Acta, 117, 393 – 397.

Vaghari, H., Hoda, J-M., Aydin, B., Navideh, A. 2013.Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes, 1-16.

Wang, Y., Goh, S. H., Chung, T. S., Na, P. 2009. Journal of Membrane Science, 326(1), 222-233.

Wang, Y., Jiang, Z., Li, H., Yang, D. 2010. Chitosan membranes filled by GPTMS modified zeolite beta particles with low methanol permeability for DMFC. Chemical Engineering and Processing, 49, 278-285.

Yang, T. 2009. Composite membrane of sulfonated poly (ether ether ketone) and sulfated poly (vinyl alcohol) for use in direct methanol fuel cells. Journal of Membrane Science, 342(1), 221-226.

Downloads

Published

25-08-2019