Study on the effect of spinning conditions on the performance of PSf/PVP ultrafiltration hollow fiber membrane

Authors

  • Sumarni Mansur Universiti Teknologi Malaysia
  • Mohd Hafiz Dzarfan Othman Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Muhammad Nidzhom Zainol Abidin Universiti Teknologi Malaysia
  • Noresah Said Universiti Teknologi Malaysia
  • Goh Pei Sean Universiti Teknologi Malaysia
  • Hasrinah Hasbullah Universiti Teknologi Malaysia
  • Siti Hamimah Sheikh Abdul Kadir Universiti Teknologi MARA
  • Fatmawati Kamal Universiti Teknologi MARA

DOI:

https://doi.org/10.11113/mjfas.v14n3.1215

Keywords:

Polysulfone, hollow fiber membrane, ultrafiltration membrane, spinning parameter, non-induced phase inversion technique

Abstract

Asymmetric, porous ultrafiltration polysulfone (PSf) hollow fiber membranes were fabricated via the dry-wet phase inversion spinning technique specifically for haemodialysis membrane. The objective was to discover the suitable spinning condition for the fabrication of ultrafiltration hollow fiber membrane with desired sponge-like structure. During haemodialysis procedure, uremic toxins such as urea and creatinine range from size 10,000-55,000 Da needs to be excreted out from the blood. While, proteins such as albumin (66,000 Da) need to be retained. The physical structure or morphology of a fabricated membrane is a major concern in determining the efficiency of a dialysis membrane. Different type of membrane morphology will give a different result in term of its permeability and clearance efficiency. The phase inversion spinning technique is suitable in producing ultrafiltation (UF) membrane where the average pore size of the fabricated membrane is in the range of 0.001 – 0.1 µm. However, there is many factors need to be controlled and manipulated in the phase inversion technique. In this study, the effect of the PVP on membrane pore size and performances were analysed. The contact angle measurement was measured to determine the hydrophilicity of the fibers. The hydrophilic polymer is favorable to avoid fouling and increase its biocompatibility. Furthermore, the diameter of the hollow fibers was determined using a scanning electron microscope (SEM). The effects of different morphology of the hollow fibers on the performance of the membranes were evaluated by pure water flux and BSA rejection. Both techniques were tested using permeation flux system. Based on the results obtained, it is found that the finger-like macrovoids in PSf hollow fiber membranes were suppressed by adding 8% PVP (Mw of 360 kDa) into the spinning dope solution as the result of a drastic increase in dope viscosity. On top of that, fiber spun with 8% PVP show more porous structure which contribute to higher permeability of the membrane. The result of this study can benefit to the membrane field of research especially in membrane technology for haemodialysis application.

Author Biographies

Sumarni Mansur, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Mohd Hafiz Dzarfan Othman, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Muhammad Nidzhom Zainol Abidin, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Noresah Said, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Goh Pei Sean, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Hasrinah Hasbullah, Universiti Teknologi Malaysia

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE)

Siti Hamimah Sheikh Abdul Kadir, Universiti Teknologi MARA

Institute of Molecular Medicine and Biotechnology, Faculty of Medicine

Fatmawati Kamal, Universiti Teknologi MARA

Institute of Molecular Medicine and Biotechnology, Faculty of Medicine

References

Gao, A. Liu, F., Xue, L. Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J. Memb. Sci. 2014; 452:390–9. doi:10.1016/j.memsci.2013.10.016.

Kerr, P. G., Kerr, P. G. Review : Membranes for haemodialysis Correspondence. Nephrology 2010; 15:381–5. doi:10.1111/j.1440-1797.2010.01331.x.

Barzin, J., Feng, C., Khulbe, K. C., Matsuura, T., Madaeni, S. S., Mirzadeh, H. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J. Memb. Sci 2004; 237:77–85. doi:10.1016/j.memsci.2004.02.029.

Mansur, S., Othman, M. H. D., Ismail, A. F., Kadir, S. H. S. A., Kamal, F., Goh, P. S., et al. Investigation on the effect of spinning conditions on the properties of hollow fiber membrane for hemodialysis application. J. Appl. Polym. Sci. 2016; 133:1–10. doi:10.1002/app.43633.

Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P., et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003; 63:1934–43. doi:10.1046/j.1523-1755.2003.00924.x.

Krieter, D. H., Wanner, C. Membranes for dialysis and hemofiltration. JAMA J Am Med Assoc 2010; 304:1497. doi:10.1001/jama.2010.1431.

Sakai, K. Determination of pore size and pore size distribution: 2. dialysis membranes. J. Memb. Sci. 1994; 96:91–130. doi:10.1016/0376-7388(94)00127-8.

Bowry, S. K., Gatti, E., Vienken, J. Contribution of polysulfone membranes to the success of convective dialysis therapies. High-Performance Membr. Dialyzers 2011; 173: 110–18. doi:10.1002/9783805598132.ch14.

Yang, Q., Chung, T. S., Santoso, Y. E. Tailoring pore size and pore size distribution of kidney dialysis hollow fiber membranes via dual-bath coagulation approach. J. Memb. Sci. 2007; 290:153–63. doi:10.1016/j.memsci.2006.12.036.

Said, N., Hasbullah, H., Ismail, A. F., Othman, M. H. D., Goh, P. S., Zainol, M. N. A., et al. Enhanced hydrophilic polysulfone hollow fiber membranes with addition of iron oxide nanoparticles. Polym. Int. 2017. doi:10.1002/pi.5401.

Downloads

Published

03-09-2018