GPTMS-Montmorillonite-filled biopolymer chitosan membrane with improved compatibility, physicochemical, and thermal stability properties ochemical and thermal stability properties

Authors

  • Lukman Atmaja Institut Teknologi SepuluhNopember
  • Mochammad Purwanto Universiti Teknologi Malaysia
  • Muhammad Taufiq Salleh Universiti Teknologi Malaysia
  • Mohamad Azuwa Mohamed Universiti Teknologi Malaysia
  • Juhana Jaafar Universiti Teknologi Malaysia
  • Ahmad Fauzi Ismail Universiti Teknologi Malaysia
  • Mardi Santoso Institut Teknologi Sepuluh Nopember
  • Nurul Widiastuti Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.11113/mjfas.v15n4.1196

Keywords:

chitosan, montmorillonite, (3-glycidoxypropyl) trimethoxysilane, physicochemical properties

Abstract

The chitosan/organo-montmorillonite (Ch/O-MMT) membrane was fabricated and tested. Surface modification of O-MMT particles using 3-glicydoxy propyl trimethoxysilane (GPTMS) to enhance its compatibility with chitosan is presented. The resulting composite membrane was characterized by using SEM, AFM, and FTIR to observe the morphological and functional group structure. The crystallinity, thermal stability, and mechanical strength was analyzed by XRD, TGA, and tensile test. The results suggested that the modification of MMT using GPTMS could increase the compatibility of O-MMT with chitosan membrane, thus producing a good composite membrane with well-dispersed MMT filler within the chitosan polymer matrices. Based on the FTIR analysis, the presence of GPTMS could improve the interaction between chitosan and O-MMT material, thus forming more hydrogen bonding with chitosan membrane than Ch/MMT membrane. The TGA curve analysis showed that the addition of inorganic filler into chitosan organic matrices was able to increase the thermal stability of Ch/MMT and Ch/O-MMT composite membrane, suggested to mechanical strength analysis. The improvement in thermal stability was due to the absence of hydrogen bonding formations between chitosan polymer and O-MMT filler. In addition, greater hydrogen bonding formation would lead to the tighter packing of Ch/O-MMT composite membrane, resulting in higher bonding strength and higher thermal resistance. All of the characterization results confirmed that the Ch/O-MMT composite membrane has better physicochemical properties than Ch/MMT composite membrane.

Author Biographies

Lukman Atmaja, Institut Teknologi SepuluhNopember

Department of Chemistry

Mochammad Purwanto, Universiti Teknologi Malaysia

Advanced Membrane Technology (AMTEC) Research Centre

Muhammad Taufiq Salleh, Universiti Teknologi Malaysia

Advanced Membrane Technology (AMTEC) Research Centre

Mohamad Azuwa Mohamed, Universiti Teknologi Malaysia

Advanced Membrane Technology (AMTEC) Research Centre

Juhana Jaafar, Universiti Teknologi Malaysia

Advanced Membrane Technology (AMTEC) Research Centre

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Advanced Membrane Technology (AMTEC) Research Centre

Mardi Santoso, Institut Teknologi Sepuluh Nopember

Department of Chemistry

Nurul Widiastuti, Institut Teknologi Sepuluh Nopember

Department of Chemistry

References

Bhattacharyya, Ruma, Samit, K. R. 2014. Micro- and nano-sized bentonite filled composite superabsorbents of chitosan and acrylic copolymer for removal of synthetic dyes from water. Applied Clay Science, 101(November): 510–20.

Chatterjee, S., M. Adhya, A. K. Guha, B.P. Chatterjee. 2005. Chitosan from mucor rouxii: Production and physico-chemical characterization. Process Biochemistry, 40(1): 395–400.

Croisier, Florence, Jérôme, C. 2013. Chitosan-based biomaterials for tissue Engineering. European Polymer Journal, 49(4): 780–92.

Giannakas, Aris, Grigoriadi, K., Leontiou, A., Barkoula, Ladavos, A. 2014. preparation, characterization, mechanical and barrier properties investigation of chitosan-clay nanocomposites. Carbohydrate Polymers, 108(1): 103–111.

Grigoriadi, Kalouda, Giannakas, A., Ladavos, A. K., Barkoula. N. M. 2015. Interplay between Processing and performance in chitosan-based clay nanocomposite films. Polymer Bulletin, 72(5): 1145–1161.

Hong, I., Seung, Lee, J. H., Bae, H. J., Koo, S. Y., Lee, H. S., Choi, J. H., Dong Kim, D. H., Park, S-H., Park, H. J. 2011. Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. Journal of Applied Polymer Science, 119(5): 2742–2749.

Huang, Yongcan, Huang, J., Cai, J., Lin, W., Lin, Q., Wu, F., Luo, J. 2015. Carboxymethyl chitosan/clay nanocomposites and their copper complexes: fabrication and property. Carbohydrate Polymers, 134: 390–397.

Huskić, M., Brnardić, I., Žigon, M., Ivanković, M. 2008. Modification of montmorillonite by quaternary polyesters. Journal of Non-Crystalline Solids, 354(28): 3326–3331.

Ichi, El, S., Zebda, A., Alcaraz, J.-P., Laaroussi, A., Boucher, F., Boutonnat, J., Reverdy-Bruas, N., et al. 2015. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy & Environmental Science, (3): 1017–1026.

Jiratumnukul, Nantana, Manowanna, P., Premmag, N. 2012. Modified Bentonite clay in UV-Curable coating applications. Engineering Journal, 16(3): 13–18.

Krishna Rao, K.S.V., Ramasubba Reddy, P., Yong-III L., Kim, C. 2012. Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydrate Polymers, 87(1): 920–925.

Lewandowska, Katarzyna, Sionkowska, A., Kaczmarek, B., Furtos, G. 2014. Characterization of chitosan composites with various clays. International Journal of Biological Macromolecules, 65: 534–541.

Liu, Bo, Wang, X., Yang, B., Sun, R. 2011. Rapid Modification of montmorillonite with novel cationic gemini surfactants and its adsorption for methyl orange. Materials Chemistry and Physics, 130(3): 1220–1226.

Liu, Xiao-Wen, Hu, M., Yue-hua, H. 2008. Chemical composition and surface charge properties of montmorillonite. Journal of Central South University of Technology, 15(2): 193–197.

Liu, Yan, Yang, S., Niu, W. 2013. Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion. Colloids and Surfaces. B, Biointerfaces, 108: 266–270.

Ludueña, Leandro, Morán, J., Alvarez, V. 2015. Biodegradable Polymer/clay nanocomposites. In Eco-Friendly Polymer Nanocomposites, edited by Vijay Kumar Thakur and Manju Kumari Thakur, 75thed., 109–135. Springer India.

Mohamed, Azuwa, M., Salleh, W.N. W., Jaafar, J., Ismail, A. F., Mutalib, M. A.,. Sani, N. A. A., Asri, S. E. A. M., Ong, C. S. 2016. Physicochemical characteristic of regenerated cellulose/n-doped tio2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chemical Engineering Journal, 284: 202–215.

Oguzlu, Hale, Tihminlioglu, F. 2010. Preparation and barrier properties of chitosan-layered silicate nanocomposite films. Macromolecular Symposia, 298(1): 91–98.

Olad, Ali, Azhar, F. F. 2014. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramics International, 40(7): 10061–10072.

Petersson, L., I. Kvien, and K. Oksman. 2007. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11–12): 2535–2544.

Purwanto, Mochammad, Atmaja, L., Mohamed, M. A., Salleh, M. T., Jaafar, J., Ismail, A. F., Santoso, M., Widiastuti, N. 2016. Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked gptms for direct methanol fuel cells. RSC Advances, 6(3): 2314–2322.

Sabaa, Magdy, W., Heba, M. A., Mohamed, N. A., Mohamed, R. R. 2015. Synthesis, Characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly (vinyl Alcohol) clay nanocomposites. Materials Science & Engineering C, Materials for Biological Applications, 56: 363–373.

Sagheer, Al, M. A., Al-Sughayer, Muslim, S., Elsabee, M. Z. 2009. Extraction and characterization of chitin and chitosan from marine sources in arabian gulf. Carbohydrate Polymers, 77(2): 410–419.

Santos, Dos, B. R., Bacalhau, F. B., Pereira, T. D. S., Souza, C. F., Faez, R. 2015. Chitosan-montmorillonite microspheres: A sustainable fertilizer delivery system. Carbohydrate Polymers, 127: 340–346.

Trisnawati, Elin, Andesti, D., Saleh, A. 2013. Pembuatan kitosan dari limbah cangkang kepiting sebagai bahan pengawet buah duku dengan variasi lama pengawetan. Jurnal Teknik Kimia, 19(2): 17–26.

Wang, Li, Wang, A. 2007. Adsorption characteristics of congo red onto the chitosan/montmorillonite nanocomposite. Journal of Hazardous Materials, 147(3): 979–985.

Wang, Yabo, Jiang, Z., Li, H., Yang, D. 2010a. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC. Chemical Engineering and Processing: Process Intensification, 49 (3): 278–285.

Wang, Yabo, Yang, D., Zheng, X., Jiang, Z., Li, J. 2008. Zeolite Beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources, 183(2): 454–463.

Wu, Hong, Zheng, B., Zheng, X., Wang, J., Yuan, W., Jiang, Z. 2007. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 173(2): 842–852.

Younes, Islem, Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo,M., Nasri, M. 2012. Chitin and Chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochemistry, 47 (12): 2032–2039.

Zhu, Junyong, Tian, M., Zhang, Y., Zhang, H., Liu, J. 2015. Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification. Chemical Engineering, Journal 265: 184–193.

Wang, Yabo, Jiang, Z., Li, H., Yang, D. 2010a. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC. Chemical Engineering and Processing: Process Intensification, 49 (3): 278–285.

Wang, Yabo, Yang, D., Zheng, X., Jiang, Z., Li, J. 2008. Zeolite Beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources, 183(2): 454–463.

Wu, Hong, Zheng, B., Zheng, X., Wang, J., Yuan, W., Jiang, Z. 2007. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 173(2): 842–852.

Younes, Islem, Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo,M., Nasri, M. 2012. Chitin and Chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochemistry, 47 (12): 2032–2039.

Zhu, Junyong, Tian, M., Zhang, Y., Zhang, H., Liu, J. 2015. Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification. Chemical Engineering, Journal 265: 184–193.

Wang, Yabo, Jiang, Z., Li, H., Yang, D. 2010a. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC. Chemical Engineering and Processing: Process Intensification, 49 (3): 278–285.

Wang, Yabo, Yang, D., Zheng, X., Jiang, Z., Li, J. 2008. Zeolite Beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources, 183(2): 454–463.

Wu, Hong, Zheng, B., Zheng, X., Wang, J., Yuan, W., Jiang, Z. 2007. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 173(2): 842–852.

Younes, Islem, Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo,M., Nasri, M. 2012. Chitin and Chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochemistry, 47 (12): 2032–2039.

Zhu, Junyong, Tian, M., Zhang, Y., Zhang, H., Liu, J. 2015. Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification. Chemical Engineering, Journal 265: 184–193.

Downloads

Published

25-08-2019