Performance of thermoelectric cooling system with smart graphical user interface for solidifying liquid sample




heat pump, Peltier device, Laser induced breakdown spectroscopy, Liquid sample, Arduino


A Thermoelectric Heat Pump (THP) controller system with smart Graphical User Interface (GUI) was introduced to solidify liquid samples for laser induced breakdown spectroscopy (LIBS) analysis. This paper describes the smart GUI and THP controller system based on the Arduino platform. The THP controller system was built to provide a user-friendly smart GUI for controlling the Peltier Thermoelectric Cooler (TEC) temperature and monitoring the sample temperature acquired from the temperature sensor. Instructions on the construction of the smart GUI and THP controller circuit were explained in this paper. The experimental results on solidifying distilled water and maintaining its freezing phase are presented in this work that demonstrated the excellent performance of the developed system.

Author Biographies



Roslinda Zainal, Universiti Teknologi Malaysia

Department of Physics


Musazzi, S., & Perini, U. (2014). Laser-induced breakdown spectroscopy: Theory and applications (Vol. 1). Berlin: Springer-Verlag.

Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W., & Omenetto, N. (2004). Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, A future super star. Journal of Analytical Atomic Spectrometry, 19(9), 1061-1083.

Papai, R., Sato, R. H., Nunes, L. C., Krug, F. J., & Gaubeur, I. (2017). Melted paraffin wax as an innovative liquid and solid extractant for elemental analysis by laser-induced breakdown spectroscopy. Analytical Chemistry, 89(5), 2807-2815.

Zhao, Y., Zhang, L., Zhao, S. X., Li, Y. F., Gong, Y., Dong, L., Ma, W. G., Yin, W. B., Yao, S. C., Lu, J. D., Xiao, L. T., & Jia, S. T. (2016). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China. Frontiers of Physics, 11(6), 114211.

Syvilay, D., Wilkie-Chancellier, N., Trichereau, B., Texier, A., Martinez, L., Serfaty, S., & Detalle, V. (2015). Evaluation of the standard normal variate method for laser-induced breakdown spectroscopy data treatment applied to the discrimination of painting layers. Spectrochimica Acta Part B-Atomic Spectroscopy, 114, 38-45.

Peng, J. Y., Liu, F., Zhou, F., Song, K. L., Zhang, C., Ye, L. H., & He, Y. (2016). Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. Trac-Trends in Analytical Chemistry, 85, 260-272.

Harun, H. A., Zainal, R., & Daud, Y. M. (2017). Analysing human nails composition by using laser induced breakdown spectroscopy. Sains Malaysiana, 46(1), 75-82.

Jantzi, S. C., Motto-Ros, V., Trichard, F., Markushin, Y., Melikechi, N., & De Giacomo, A. (2016). Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 115, 52-63.

St-Onge, L., Kwong, E., Sabsabi, M., & Vadas, E. B. (2004). Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. Journal of pharmaceutical and Biomedical Analysis, 36(2), 277-284.

Lee, D.-H., Han, S.-C., Kim, T.-H., & Yun, J.-I. (2011). Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy. Analytical Chemistry, 83(24), 9456-9461.

Rai, N. K., & Rai, A. (2008). LIBS—an efficient approach for the determination of Cr in industrial wastewater. Journal of Hazardous Materials, 150(3), 835-838.

Aras, N., Yeşiller, S. Ü., Ateş, D. A., & Yalçın, Ş. (2012). Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 74-75, 87-94.

Zhong, S.-L., Lu, Y., Kong, W.-J., Cheng, K., & Zheng, R. (2016). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy. Frontiers of Physics, 11, 1-9.

Cahoon, E. M., & Almirall, J. R. (2012). Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy. Analytical chemistry, 84(5), 2239-2244.

Godwal, Y., Kaigala, G., Hoang, V., Lui, S.-L., Backhouse, C., Tsui, Y., & Fedosejevs, R. (2008). Elemental analysis using micro laser-induced breakdown spectroscopy (μLIBS) in a microfluidic platform. Optics Express, 16(17), 12435-12445.

Groh, S., Diwakar, P., Garcia, C., Murtazin, A., Hahn, D., & Niemax, K. (2010). 100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes. Analytical Chemistry, 82(6), 2568-2573.

Motto-Ros, V. (2015). Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate. Frontiers of Physics, 10(2), 231-239.

Xiu, J., Bai, X., Negre, E., Motto-Ros, V., & Yu, J. (2013). Indirect laser-induced breakdown of transparent thin gel layer for sensitive trace element detection. Applied Physics Letters, 102(24), 244101.

Cáceres, J., López, J. T., Telle, H., & Ureña, A. G. (2001). Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 56(6), 831-838.

Sobral, H., Sanginés, R., & Trujillo-Vázquez, A. (2012). Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 78, 62-66.

Jantzi, S. C., & Almirall, J. R. (2011). Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS). Analytical and Bioanalytical Chemistry, 400(10), 3341-3351.

Lazic, V., Colao, F., Fantoni, R., Spizzichino, V., & Jovićević, S. (2007). Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(1), 30-39.

El-Hussein, A., Kassem, A., Ismail, H., & Harith, M. (2010). Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies. Talanta, 82(2), 495-501.

Harun, H. A., & Zainal, R. (2018). Improvement of laser induced breakdown spectroscopy signal for sodium chloride solution. Malaysian Journal of Fundamental and Applied Sciences, 14, 429-433.

Wishkerman, A., & Wishkerman, E. (2017). Application note: A novel low-cost open-source LED system for microalgae cultivation. Computers and Electronics in Agriculture, 132, 56-62.

Tedeschi, A., Calcaterra, S., & Benedetto, F. (2017). Ultrasonic Radar System (URAS): Arduino and virtual reality for a light-free mapping of indoor environments. Ieee Sensors Journal, 17(14), 4595-4604.

Ali, A. S., Zanzinger, Z., Debose, D., & Stephens, B. (2016). Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, 100, 114-126.

Barroca, N., Borges, L. M., Velez, F. J., Monteiro, F., Gorski, M., & Castro-Gomes, J. (2013). Wireless sensor networks for temperature and humidity monitoring within concrete structures. Construction and Building Materials, 40, 1156-1166.

Hossain, M. A., Canning, J., Yu, Z. K., Ast, S., Rutledge, P. J., Wong, J. K. H., Jamalipour, A., & Crossley, M. J. (2017). Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter. Analyst, 142(11), 1953-1961.

Purdum, J. J., & Levy, B. (2012). Beginning C for Arduino. New York: Springer.

Nemati, A., Nami, H., Yari, M., Ranjbar, F., & Kolvir, H. R. (2016). Development of an exergoeconomic model for analysis and multi-objective optimization of a thermoelectric heat pump. Energy Conversion and Management, 130, 1-13.

Holmes, D. G., & Lipo, T. A. (2003). Pulse width modulation for power converters: principles and practice (Vol. 18). Hoboken, NJ: John Wiley & Sons.

Recktenwald, G. (2011). Basic pulse width modulation. Retrieved from