The performance of CO2/N2 separation on P84/NCC-based tubular carbon membrane under different carbonization conditions
DOI:
https://doi.org/10.11113/mjfas.v15n3.1177Keywords:
Carbon membrane, Carbonization environment, Argon, Tubular carbon membrane, Nanocrystalline cellulose.Abstract
In this study, the influence of carbonization environment on the performance of Tubular Carbon Membrane (TCMs) was explored. P84 co-polyimide/Nanocrystalline cellulose-based TCMs were synthesized by dip-coating technique. The permeation properties of TCMs were determined by employing pure gas of CO2 and N2. Heat treatment processes were carried out under different environment (Argon, Nitrogen, and Helium) with the flow rate of 200 ml/min to boost the membrane’s performance. The carbonization process was performed at a consistent carbonization temperature of 800oC under heating rate of 3oC/min. Carbonization under Argon environment was found to be the best condition for PI/NCC-based TCMs preparation with the permeance of 3.22±3.21and 213.56±2.17 GPU for N2, and CO2 gases, respectively. This membrane exhibited the uppermost CO2/N2 selectivity of 66.32±2.18. TCMs prepared under Ar environment experienced less weight loss while exhibiting highest CO2/N2 selectivity as compared to those prepared under He and N2 environment.
References
Briceño, K., Montané, D., Garcia-Valls, R., Iulianelli, A., Basile, A. (2012). “Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation”. Journal of Membrane Science, 415-416, 288-297.
Favvas, E. P., Heliopoulos, N. S., Papageorgiou, S. K., Mitropoulos, A. C., Kapantaidakis, G. C., Kanellopoulos, N. K. (2015). “Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time”. Separation and Purification Technology, 142, 176-181.
Grosso, V., Vuono, D., Bahattab, M. A., Di Profio, G., Curcio, E., Al-Jilil, S. A., Alsubaie, F., Alfife, M., B. Nagy, J., Drioli, E., Fontananova, E. (2014). “Polymeric and mixed matrix polyimide membranes”. Separation and Purification Technology, 132, 684-696.
He, X., Hägg, M.-B. (2012). “Structural, kinetic and performance characterization of hollow fiber carbon membranes”. Journal of Membrane Science, 390-391, 23-31.
Hosseini, S. S., Omidkhah, M. R., Zarringhalam Moghaddam, A., Pirouzfar, V., Krantz, W. B., Tan, N. R. (2014). “Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process”. Separation and Purification Technology, 122, 278-289.
Ismail, A. F., Li, K. (2008). “From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes”. Membrane Science and Technology, 13, 81-119.
Ismail, N. H., Salleh, W. N. W., Sazali, N., Ismail, A. F., Yusof, N., Aziz, F. (2018). “Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere”. Separation and Purification Technology, 195, 295-304.
Kim, Y. K., Park, H. B., Lee, Y. M. (2003). “Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties”. Journal of Membrane Science, 226, 145-158.
Mahdyarfar, M., Mohammadi, T., Mohajeri, A. (2013). “Gas separation performance of carbon materials produced from phenolic resin: Effects of carbonization temperature and ozone post treatment”. New Carbon Materials, 28, 39-46.
Muench, F., Seidl, T., Rauber, M., Peter, B., Brötz, J., Krause, M., Trautmann, C., Roth, C., Katusic, S., Ensinger, W. (2014). “Hierarchically porous carbon membranes containing designed nanochannel architectures obtained by pyrolysis of ion-track etched polyimide”. Materials Chemistry and Physics, 148, 846-853.
Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M., Harun, Z., Ismail, A. F. (2015). “Matrimid-based carbon tubular membranes: The effect of the polymer composition”. Journal of Applied Polymer Science, 132, (33) 42394.
Sazali, N., Salleh, W. N. W., Ismail, A. F., Nordin, N. A. H. M., Ismail, N. H., Mohamed, M. A., Aziz, F., Yusof, N., Jaafar, J. (2018). “Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance”. Journal of Natural Gas Science and Engineering, 49, 376-384.
Sazali, N., Salleh, W. N. W., Ismail, A. F. (2017). “Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation”. International Journal of Hydrogen Energy, 42, 9952-9957.
Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M., Ismail, A. F. (2015b). “Matrimid-based carbon tubular membrane: Effect of carbonization environment”. Journal of Industrial and Engineering Chemistry, 32, 167-171.
Shao, P., Huang, R. Y. M. (2007). “Polymeric membrane pervaporation”. Journal of Membrane Science, 287, 162-179.
Song, C., Wang, T., Qiu, J., Cao, Y., Cai, T. (2008). “Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes”. Journal of Porous Materials, 15, 1-6.
Suda, H., Haraya, K. (1997). “Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide”. The Journal of Physical Chemistry B, 101, 3988-3994.
Sun, C., Srivastava, D. J., Grandinetti, P. J., Dutta, P. K. (2016). “Synthesis of chabazite/polymer composite membrane for CO2/N2 separation”. Microporous Mesoporous Materials, 230, 208-216.
Sreedhar, I., Vaidhiswaran, R., Kamani, B. M., Venugopal, A. (2017). “Process and engineering trends in membrane based carbon capture”. Renewable and Sustainable Energy Reviews, 68, 659-684.
Steel, K. M., Koros, W. J. (2005). “An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials”. Carbon, 43, 1843-1856.
Teixeira, M., Campo, M. C.,Pacheco Tanaka, D. A., Llosa Tanco, M. A., Magen, C., Mendes, A. (2011). “Composite phenolic resin-based carbon molecular sieve membranes for gas separation”. Carbon, 49, 4348-4358.
Tin, P. S., Chung, T.-S., Liu, Y., Wang, R. (2004). “Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide”. Carbon, 42, 3123-3131.