Hydrolysis of microcrystalline cellulose isolated from waste seeds of Leucaena leucocephala for glucose production

Authors

DOI:

https://doi.org/10.11113/mjfas.v15n2.1165

Keywords:

Leucaena leucocephala seed, waste residue, micro cellulose, acid hydrolysis, glucose

Abstract

The waste seeds of Leucaena leucocephala (LLS) used in this study were unused residues obtained after oil and polysaccharides extraction. The microcrystalline cellulose (MCC) was isolated from LLS by acid treatment. MCC produced was, then, further converted to glucose by using sulphuric acid at 121 °C by varying the acid concentration and reaction time. The sugar composition was analyzed by using the phenol-sulfuric acid method and pre-column derivatization HPLC technique. The yield of glucose ranging from 70–85% could be obtained from MCC hydrolyzates, depending on the hydrolysis factors, which corresponding to around 57-75% of the percentage conversion of MCC to glucose.Cellulose isolated from LLS was, therefore, potentially suitable to be utilized in liquid biofuels and other value-added chemicals such as bioethanol, 5-hydroxymethylfurfural(HMF), and levulinic acid.

References

Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2), 676–687.

Aderibigbe, S. A., Adetunji, O. ., & Odeniyi, M. A. (2011). Antimicrobial and pharmaceutical properties of the seed oil of Leucaena leucocephala (Lam.) de Wit (Leguminosae). African Journal of Biomedical Research, 14, 63–68.

Amiri, H., & Karimi, K. (2013). Efficient dilute-acid hydrolysis of cellulose using solvent pretreatment. Industrial and Engineering Chemistry Research, 52(33), 11494–11501.

Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H., & Sixta, H. (2006). Cellulose processing with chloride-based ionic liquids. Lenzinger Berichte, 86, 154–161.

Cardenas-toro, F. P., Alcazar-alay, S. C., Forster-carneiro, T., & Meireles, M. A. A. (2014). Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments. Food and Public Health, 4(3), 123–139.

Kumar, C. S., & Venkatesh, R. (2014). Estimation of reducing sugar by acid hydrolysis of black grape (Vitis vinifera L.) peels by standard methods. Journal of Chemical and Pharmaceutical Research, 6(5), 862–866.

Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., & Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59, 27–34.

Das, A. M., Hazarika, M. P., Goswami, M., Yadav, A., & Khound, P. (2016). Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum. Carbohydrate Polymers, 141, 20–27.

Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

Duff, S. J. B., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 55, 1–33.

Dussán, K. J., Silva, D. D. V, Moraes, E. J. C., Priscila, V., & Felipe, M. G. A. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chemical Engineering Transactions, 38, 433–438.

Gámez, S., González-Cabriales, J. J., Ramírez, J. A., Garrote, G., & Vázquez, M. (2006). Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 74(1), 78–88.

Hakimi, M. I., Goembira, F., & Ilham, Z. (2017). Engine-Compatible Biodiesel from Leucaena leucocephala Seed Oil. Journal of the Society of Automotive Engineers Malaysia, 1(2), 86–93.

Hsu, W., Lee, Y., Peng, W., & Wu, K. C. (2011). Cellulosic conversion in ionic liquids ( ILs ): Effects of H2O / cellulose molar ratios , temperatures , times , and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catalysis Today, 174(1), 65–69.

Hutomo, G. S., Rahim, A., & Kadir, S. (2015). The effect of sulfuric and hydrochloric acid on cellulose degradation from pod husk cacao. International Journal on Current Microbiology and Applied Sciences, 4(10), 89–95.

Iryani, D. A., Kumagai, S., Nonaka, M., Nagashima, Y., Sasaki, K., & Hirajima, T. (2014). The hot compressed water treatment of solid waste material from the sugar industry for valuable chemical production. International Journal of Green Energy, 11(November), 577–588.

Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99.

Jose, C., Joy, J., Mathew, L., Koetz, J., & Thomas, S. (2014). Nanofibril reinforced unsaturated polyester nanocomposites : Morphology , mechanical and barrier properties , viscoelastic behavior and polymer chain confinement. Industrial Crops & Products, 56, 246–254.

Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Av, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites : A review. International Journal of Polymer Science, 2011, 1-35.

Kamio, E., Takahashi, S., Noda, H., Fukuhara, C., & Okamura, T. (2008). Effect of heating rate on liquefaction of cellulose by hot compressed water. Chemical Engineering Journal, 137, 328–338.

Kopania, E., Wietecha, J., & Ciechańska, D. (2012). Studies on isolation of cellulose fibres from waste plant biomass. Fibres and Textiles in Eastern Europe, 96(6 B), 167–172.

Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2015). Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renewable Energy, 83, 850–858.

Lanzafame, P., Temi, D. M., Perathoner, S., Spadaro, A. N., & Centi, G. (2012). Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts. Catalysis Today, 179(1), 178–184.

Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56(1), 1–24.

Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156, 395–403.

Li, C., Zhang, Z., & Zhao, Z. K. (2009). Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Letters, 50(38), 5403–5405.

Li, F. H., Hu, H. J., Yao, R. S., Wang, H., & Li, M. M. (2012). Structure and saccharification of rice straw pretreated with microwave-assisted dilute lye. Industrial and Engineering Chemistry Research, 51, 6270–6274.

Liu, Z., Li, L., Liu, C., & Xu, A. (2017). Sacchari fi cation of cellulose in the ionic liquids and glucose recovery. Renewable Energy, 106, 99–102.

Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.

Morales-delaRosa, S., Campos-Martin, J. M., & Fierro, J. L. G. (2012). High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chemical Engineering Journal, 181–182, 538–541.

Nehdi, I. A., Sbihi, H., Tan, C. P., & Al-Resayes, S. I. (2014). Leucaena leucocephala (Lam.) de Wit seed oil: Characterization and uses. Industrial Crops and Products, 52, 582–587.

Ni, J., Wang, H., Chen, Y., She, Z., Na, H., & Zhu, J. (2013). A novel facile two-step method for producing glucose from cellulose. Bioresource Technology, 137, 106–110.

Nuruddin, M., Chowdhury, A., Haque, S. A., Rahman, M., Farhad, S. F., Jahan, M. S., & Quaiyyum, A. (2011). Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellulose Chemistry and Technology., 45(5–6),

–354.

Orozco, A., Ahmad, M., Rooney, D., & Walker, G. (2007). Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection, 85, 446–449.

Parawira, W. (2010). Biodiesel production from Jatropha curcas: A review. Scientific Research and Essays, 5(14), 1796–1808.

Phaiboonsilpa, N., & Saka, S. (2011). Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water with acetic acid. Green Energy and Technology, 66(December 2017), 142–146.

Phaiboonsilpa, N., Tamunaidu, P., & Saka, S. (2011). Two-step hydrolysis of nipa (Nypa fruticans) frond as treated by semi-flow hot-compressed water. Holzforschung, 65(5), 659–666.

Pius, A., Ekebafe, L., Ugbesia, S., & Pius, R. (2014). Modification of adhesive using cellulose micro-fiber ( CMF ) from melon seed shell. American Journal of Polymer Science, 4(4), 101–106.

Poletto, M., Júnior, H., & Zattera, A. (2014). Native cellulose: structure, characterization and thermal properties. Materials, 7(9), 6105–6119.

Punsuvon, V., Vaithanomsat, P., & Iiyama, K. (2008). Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment. Maejo International Journal of Science and

Technology, 2(1), 182–191.

Sasaki, C., Sumimoto, K., Asada, C., & Nakamura, Y. (2012). Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion. Carbohydrate Polymers, 89(1), 298–301.

Siqueira, G., Várnai, A., Ferraz, A., & Milagres, A. M. F. (2013). Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 102, 399–402.

Sun, B., Peng, G., Duan, L., Xu, A., & Li, X. (2015). Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose. Bioresource Technology, 196, 454–458.

Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339.

Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., Holmes, B. M. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels, 6(1), 39.

Szczodrak, J., & Fiedurek, J. (1996). Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy, 10(5–6), 367–375.

Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., & Lidén, G. (1997). Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & Engineering Chemistry Research, 36(11), 4659–4665.

Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N.

(2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 104(1), 223–230.

Vala, R. M. K., & Tichagwa, L. (2013). Cellulose chemistry and technology low temperature acid hydrolysis of grass-derived lignocellulose for fermentable sugars production. Cellulose Chemistry and Technology, 47, 565–572.

Wang, D., Shang, S. Bin, Song, Z. Q., & Lee, M. K. (2010). Evaluation of microcrystalline cellulose prepared from kenaf fibers. Journal of Industrial and Engineering Chemistry, 16(1), 152–156.

Wijaya, Y. P., Putra, R. D. D., Widyaya, V. T., Ha, J. M., Suh, D. J., & Kim, C. S. (2014). Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221–231.

Yoon, S. Y., Han, S. H., & Shin, S. J. (2014). The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 77, 19–24.

Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., & Holladay, J. E. (2005). Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling. Energy Fuels, 20(2), 807–811.

Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40, 3082–3086.

Zhuo, K., Du, Q., Bai, G., Wang, C., Chen, Y., & Wang, J. (2015). Hydrolysis of cellulose catalyzed by novel acidic ionic liquids. Carbohydrate Polymers, 115, 49–53.

Downloads

Published

16-04-2019